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Project description

Compute the ζ(p)(s, t) mentioned above, or make an educated guess, and verify that they

satisfy the identities known for the ζ(s, t).

The “known identities” I have in mind are:

(a) Let ∆ be the coproduct on Q � e0, e1 � for which the ei are primitive: ∆ei = ei ⊗ 1 +

1⊗ ei. It induces a coproduct on Q � e0, eq � /Q � e0, e1 � e0 + e1Q � e0, e1 �. In this

quotient,

gR :=
∑

ζ(s1, . . . , sr)e
s1−1
0 e1 . . . esr−1

0 e1

is group like: ∆gR = gR ⊗ gR.

(b) ζ(s)ζ(t) = ζ(s, t) + ζ(t, s) + ζ(s + t) (an instance of
∑
n,m

=
∑

n>m

+
∑

m>n

+
∑

n=m

)

The action of Frobenius is defined in [1], §11. A more natural definition is given in

[2], but I don’t expect it to make computations easier. The tangential base point required

(tangent vector 1 at 0) is explained in [1], §15. A rather unsatisfactory computation of the

ζ(p)(s) is essentially the content of [1], 19.6, 19.7, and amounts to ζ(p)(s) being the following

regularization of

−ps
∑
p-n

1

ns
:

write
∑′ for a sum extended only to n prime to p and for ` prime to p write formally

`1−s
∑′ 1

ns
= `

∑′ 1

(`n)s
=

∑
α`=1

∑′αn

ns
, hence

∑′ 1

ns
= (`1−s − 1)−1

∑
α`=1,α 6=1

∑′

p-n

αn

ns
.
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It remains to regularize
∑′ zn

ns for z not congruent to 1 mod p. Let (n mod pN) denote the

residue of n mod pN . Define

∑′ zn

ns
= lim

N

∑′ zn

(n mod pN)s
= lim

N

∑
k

zpN ·k
pN∑′

1

zn

ns

:= lim
N

(1− zpN

)−1

pN∑′

1

zn

ns
.
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