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Project description
Compute the ¢(P)(s,t) mentioned above, or make an educated guess, and verify that they
satisfy the identities known for the ((s, ).

The “known identities” I have in mind are:

(a) Let A be the coproduct on Q < eq, e; > for which the e; are primitive: Ae; = ¢; ® 1 +
1 ®e;. It induces a coproduct on Q < eg, e, > /Q < eg,e1 > ey + e1Q < eg, €1 >. In this

quotient,
IR = Z C(Sh R 87')6(5)17161 s egr_lel
is group like: Agr = gr ® gr.

(b) C(s)C(t) = Cls,t) +C{t5) + (s +#)  (aminstance of 2, = 3, + 2. + 2 )
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The action of Frobenius is defined in [1], §11. A more natural definition is given in
[2], but T don’t expect it to make computations easier. The tangential base point required
(tangent vector 1 at 0) is explained in [1], §15. A rather unsatisfactory computation of the
¢P)(s) is essentially the content of [1], 19.6, 19.7, and amounts to (P (s) being the following
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write Y’ for a sum extended only to n prime to p and for ¢ prime to p write formally
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It remains to regularize > 2= for z not congruent to 1 mod p. Let (n mod p) denote the
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residue of n mod p". Define
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