
Periods for the Fundamental Group
Lectures by Pierre Deligne; notes by Kiran Kedlaya

Arizona Winter School 2002

About these notes

These notes are an attempt to transcribe/translate my notes from Deligne’s lectures at the
2002 AWS. It was difficult to make much of an accurate record of what was going on; I have
attempted to “add value” by filling in things that were not said explicitly. Any resulting
errors are my fault alone. For all (or at least most) of the details, the überreference is
Deligne’s article [D]; suggestions for additional references would be welcome.

The five sections correspond approximately to the five lectures given by Deligne; as the
“cuts” between topics did not quite coincide with the breaks between lectures, I’ve followed
the former instead of the latter in placing the section breaks.

These notes are copyright 2002-2003 by Kiran S. Kedlaya. You may freely distribute
unmodified copies of these notes; I fully intend to grant permission to distribute modified
copies also, especially if errors have been corrected!

This version was last revised 20 Mar 2003, and covers all of the first 4 lectures and part
of the 5th lecture. I plan to ultimately distribute a version that includes all 5 lectures, but
I have many other things to do in the interim, so please be patient.

1 Introduction

Throughout these lectures, let X/K be a smooth affine variety over a number field K, and
choose an embedding K ↪→ C. The goal is to relate two cohomology theories associated to X:
the (torsion-free part of the) singular, or “Betti” cohomology of the topological space X(C),
and the algebraic “de Rham” cohomology, i.e., the (hyper)cohomology of the complex Ω∗X
of algebraic differential forms on X. (The “hyper” would be relevant if X were not required
to be affine.) Specifically, there is a natural (“motivic”) comparison isomorphism

compB,dR : HdR(X)⊗K C ∼→ HB(X)⊗Q C

and we want to know what it is. Explicitly, a basis for HdR is given by a set of algebraic
differentials, a dual basis for HB(X) is given by a set of topological cycles (by Poincaré
duality), and the comparison isomorphism, viewed as a perfect pairing on HdR(X) ⊗K C
with (HB(X) ⊗Q C)∨, is integration of the differential along the cycle (the so-called period
pairing).

Example: Gm

For example, if X = Gm = P1 − {0,∞}, then H1,B = (H1
B)∨ is generated by a counterclock-

wise loop σ around 0, and H1
dR is the cokernel of d as a map from Q[z, z−1] to Q[z, z−1] dz.
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That cokernel is generated by dz/z, and in this case the pairing simply pairs σ and dz/z to∫
σ
dz/z = 2πi.

Aside: a bit of functoriality

Suppose the embedding K ↪→ C factors through R. Then X(C) comes with an involution,
namely complex conjugation, which thus induces an involution F∞ on HB(X). For example,
in Gm, F∞ turns the counterclockwise loop σ into the clockwise loop σ−1. In other words, if
we view C as “an” algebraic closure of R, then HB,k↪→C is “functorial in C”.

The Hodge filtration

Besides the usual analytic construction, the Hodge filtration on HdR(X) can be constructed
algebraically in at least two ways. In the process, it will be clear that the Hodge filtration
is respected by functorial maps on cohomology.

First way: embed X into X, a smooth proper variety in which the complement D = X\X
is a normal crossings divisor. If you are paranoid, take D to be a strict normal crossings
divisor, that is, each component of D is itself a normal variety. (That this can always be done
follows from the resolution of singularities theorem of Hironaka.) Now let Ω∗

X
(log D) be the

complex of differential forms which are permitted to have logarithmic (i.e, dz/z) poles along
components of D. The hypercohomology of this complex (and this time we really need the
“hyper”, since we’re on X which is not affine) is precisely the de Rham cohomology of X. A
bit more precisely, there is a spectral sequence E1

pq = Hq(X, Ωp

X
(log D)) ⇒ H(Ωp+q

X
(log D)),

but it degenerates at E1.
In this notation, the steps of the Hodge filtration are, for each p, precisely the cohomology

of the subcomplex of Ω∗
X

(log D) where you look at p-forms or higher.
Second way (better suited for finite characteristic): for each n, one usually denotes by

OX(nD) the sheaf of rational functions on X with poles of order at worst n along the
components of D (and no other poles). Let OX(∞D) be the union of these; then the
cohomology of the complex

OX(∞D) → Ω1
X

(∞D) → · · ·

is again the de Rham cohomology of X, and the Hodge filtration can be given by taking
Fili = OX(iD).

Random stuff about motives

These seem to be a few universal comments about cohomology of varieties, so I’ll denote the
cohomology without specifying whether I mean Betti, de Rham, or anything else; I mean all
of them. Of course, what we’re really doing is talking about motives, but we’re not going to
define what a motive is. Think of it as a piece of the “universal” cohomology of a variety;
that is, the only operations allowed are ones that come from geometry. For example, a
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morphism X → Y induces maps H ·(Y ) → H ·(X), and there is a natural isomorphism of
H i(X × Y ) with

∑
j+k=i H

j(X)⊗Hk(Y ).

Denote by Z(−1) the Tate motive H1(Gm) = H2(P1) = H2
c (A1) = H2

{0}(A1). The point

is that these are all canonically isomorphic. Let Z(−n) denote the n-th tensor power of
Z(−1) (for n positive, negative or zero). Note that for X projective, smooth, and irreducible
of dimension d, H2d(X) is canonically isomorphic to Z(−d).

Also, if Z ⊂ X is an algebraic cycle of codimension d, then one gets a canonical class in
H2d

Z (X)⊗ Z(d).
One says that a cohomological structure is “motivic” if it can be defined purely in

terms of algebraic geometry, without reference to a specific cohomology theory. The Hodge
filtration above is not motivic; its construction is specific to the de Rham theory. There is
another filtration, the weight filtration, which is motivic, but unfortunately I couldn’t follow
the description given in the lecture.

There was also a bit more about periods that didn’t make much sense. One comment
cribbed from Lecture 2 (which starts immediately below); periods can be viewed as “coor-
dinates on Hodge structures” (a la de Jong’s lectures).

A little more “motive”-ation: realizations

(Caution: notihng we’re about to say is going to be rigorous, or even particularly sensical.
Nonetheless it ought to provide some helpful context. Also, this actually happened at the
start of Lecture 2, but it belongs more naturally with the first lecture.)

Let M be a “motive”, i.e., a piece of cohomology of a variety cut out by purely geometric
means. For example, M might be the full i-th cohomology of a variety. Each cohomology
theory for algebraic varieties is what we call a “realization” of M . In the cases at hand, we
have the “Betti realization” MB which comes from the topology of the complex points of a
variety, and the “de Rham” realization MdR which comes from differential forms. There may
be additional motivic structures on M , e.g., if M is the middle cohomology of a projective
variety, then the intersection pairing gives a “polarization” M ⊗M → Z(−d). In any case,
there should exist a comparison isomorphism

comp : MdR → MB

that respects any additional structures.
Now in each realization of M , there should be a group of automorphisms GB or GdR,

respectively, that respect all the motivic structures. These in turn should be “realizations”
of a “motivic Galois group” of M . A little bit more precisely, there should be a scheme dRPB

of isomorphisms from GdR and GB, which has points over C such as comp, but typically not
any points over Q.

It is conjectured that comp is a generic point of P , at least if our varieties are over a
number field. (Already over Q(t), it is possible to have “accidental” dependences.)

(some stuff omitted here because I didn’t get it written down.)
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In passing, we note that there are additional realizations besides the Betti and de Rham
realizations (i.e., additional cohomology theories on algebraic varieties over a number field)
that are important and useful. For example, say M is a motive over a number field k. Then
for each prime `, there is an `-adic realization M`, which is a Q`-vector space carrying an
action of Gal(k/k). If M is the full cohomology of a variety X, then M` is the full `-adic
(étale) cohomology of X ×k k.

Another example is the “crystalline” realization. If M is a motive over Zp (i.e., the
cohomology of a smooth scheme X/Zp, i.e., a smooth variety over Qp with good reduction),
then the de Rham cohomology (of the generic fibre) HdR(X) is a Qp-vector space, which
depends functorially just on the reduction of X modulo p. That means the absolute Frobenius
on X (which acts on the structure sheaf by sending x to xp for all x) induces an action on
HdR(X). This construction is important, for example, in the project carried out by Deligne’s
students at the AWS.

2 The unipotent fundamental group: Betti realization

Coproducts

Let Q[π1] be the group algebra of π1 with coefficients in Q. (That is, it’s the Q-vector
space generated by the elements of π1, with the multiplication in the algebra given by
(
∑

i qi[γi])(
∑

j rj[ηj]) =
∑

i,j qirj[γiηj].) Then Q[π1] admits a natural coproduct structure:
∆ : Q[π1] 7→ Q[π1] ⊗ Q[π1] sending [σ] 7→ [σ] ⊗ [σ]. (A coproduct on an R-algebra A is an
algebra homomorphism ∆ : R → R ⊗A R which is coassociative, i.e., the two natural maps
R → R⊗A R⊗A R you can make out of ∆ are the same.)

If we let I be the augmentation ideal of Q[π1], generated by [σ]−1 for all σ ∈ πi, then the
coproduct induces a coproduct ∆ on Q[π1]/I

n. This coproduct happens to be cocommutative
(you get the same thing if you postcompose with switching the two factors of Q[π1] in the
tensor product), so taking Spec of the Q-dual (Q[π1]/I

n)∨ gives an algebraic group. If we
take the inverse limit of these (i.e., take the direct limit of the duals and then take Spec of
that), we get a pro-algebraic group. This is the unipotent fundamental group over Q.

A filtration on the fundamental group

Here is another, more group-theoretic interpretation of the pro-algebraic group we con-
structed in the previous section.

Given π1, we first construct the commutator subgroup (π1, π1), so that the quotient
π1/(π1, π1) is the maximal abelian quotient of π1. This cannot sit inside the set of Q-valued
points of (Q[π1]/I

2)∨ because the latter is torsion-free. So we define Z1(π1) as the subgroup
of π1 consisting of all g ∈ π1 some power of which is in (π1, π1). Now define Zn+1(π1) as the
subgroup of π1 consisting of all g ∈ π1 some power of which is in (π1, Z

n(π1)). Then each
quotient Zn(π1)/Z

n+1(π1) is a free abelian group; since π1 is finitely generated, so are these
quotients.
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The inverse limit lim← π1/Z
n(π1) sits inside the inverse limit lim← Spec(Q[π1]/I

n)∨; in
fact, we can write it as the Z-valued points of a certain pro-algebraic group. Namely, pick
free generators e1, . . . , en of π1/Z

1(π1), and lift them to ẽ1, . . . , ẽn in π1. Then pick free
generators en+1, . . . , en+m of Z1(π1)/Z

2(π1) and lift them to ẽn+1, . . . , ẽn+m and so on. We
can write each element of the inverse limit as an infinite product ẽz1

1 ẽz2
2 · · · ; think of the zi

as “coordinates” on the group. In these coordinates, the group law is unipotent in the zi:
given g =

∏
ẽyi

i and h =
∏

ẽzi
i , the coordinate of ẽi in gh is yi + zi plus a polynomial in the

prior yj and zj. That polynomial is of course integer-valued on integer arguments, but need
not have integer coefficients.

In this formulation, you recover lim← Spec(Q[π1]/I
n)∨ by formally allowing the zi to be

rational numbers, using the aforementioned polynomials to give the group law. In group
theory, I think this construction is called the Mal’cev completion of π1.

An interesting point of view: giving the affine algebra lim→(Q[π1]/I
n)∨ amounts to

specifying which functions on π1 are “algebraic”. The condition of algebraicity is as follows:
for each τ ∈ π1, define the “difference operator” ∆τ on the space of Q-valued functions on
π1 as follows:

(∆τf)(σ) = f(στ)− f(σ).

Then the algebraicity condition on a function f is that there exists N such that ∆τ1∆τ2 · · ·∆τN
f =

0 for all τ1, . . . , τN . For example, if π1 = Z, then this condition says precisely that f : Z → Q
is a polynomial (of degree at most N − 1).

Geometric aside that I don’t really understand: it is a familiar fact that H1(X, C)
is canonically isomorphic to the torsion-free quotient of the abelianization of π1, that is,
π1/Z

1(π1). Apparently (and I didn’t follow this remark) the successive steps Zn−1(π1)/Z
n(π1)

in the filtration correspond (maybe are canonically isomorphic?) to Hn(X, C).

3 The unipotent fundamental group: de Rham realiza-

tion

Unipotent groups and their Lie algebras

Recall that for any field K of characteristic 0, there is a correspondence

{unipotent groups over K} ↔ {nilpotent Lie algebras over K}

by taking logarithms/exponentials. Going from right to left, one can multiply two exponen-
tials by using the Campbell-Hausdorff formula. Or from the Lie algebra, make its universal
enveloping algebra with the coproduct x 7→ x⊗ 1 + 1⊗ x for x in the Lie algebra, then take
the group to be the “grouplike” elements, those y such that y 7→ y ⊗ y.

That correspondence works either for honest algebraic groups or pro-algebraic groups.
Thus in trying to construct the de Rham realization of the unipotent fundamental group,
we can (and will) first construct a nilpotent Lie algebra. That in turn we will do by first
constructing the finite-dimensional representations of the group/algebra, i.e., local systems.
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Local systems and their monodromy

Given an algebraic variety X over a number field k, let π1 = π1(X(C), P ) be the topological
fundamental group of the set of complex points X(C) with some chosen (algebraic) base
point P . Then there is a bijection between finite dimensional linear representations ρ : π1 →
GLn(C) and rank n local systems on X(C), i.e., complex-analytic vector bundles of rank
n over X(C) equipped with an integrable connection; we will describe one direction of this
bijection below. (Note: this description is not in the original notes.)

Quick refresher on local systems: if V is the vector bundle (i.e., locally free module over
the structure sheaf), then a connection is a bundle map ∇ : V → V ⊗ Ω1

X(C) which satisfies

the Leibniz rule: ∇(fv) = f∇(v) + v⊗ df . This induces maps ∇i : V ⊗Ωi
X(C) → V ⊗Ωi+1

X(C);
the connection is said to be integrable if ∇i+1 ◦∇i = 0 for all i, or equivalently just for i = 0.
(Integrability is a vacuous condition if X is a curve, which will be the case in our principal
example, the projective line minus three points.)

Example: on Gm with coordinate z, consider the rank one local system where the vector
bundle is trivial (so sections can be identified with functions on Gm), and the connection
maps f to df − αdz

z
. Locally zα is a horizontal section, but it is only defined globally if α is

an integer. Otherwise, if one attempts to analytically continue zα around the origin, when
one gets back to the starting point the function has been multiplied by exp(2πiα). More
generally, given a local system on X(C) and a loop γ ∈ π1, analytically continuing a basis
of horizontal sections along γ results in a new basis which is related to the old one by some
matrix M ∈ GLn(C). That matrix is called the monodromy of γ; the map that associates to
each loop its monodromy gives a representation ρ : π → GLn(C), and this is one direction
of the bijection given above. (We will not describe the reverse direction here.)

For various reasons, we are interested in representations/local systems in which the
monodromy is unipotent. Recall that a matrix M is called unipotent if I −M is nilpotent.
A representation is called unipotent if its image consists of unipotent matrices; this implies
that the matrices I − ρ(γ) are simultaneously nilpotent, i.e., they have nontrivial common
kernel, modulo that kernel they again have a common kernel, and so on. The example on
Gm above is of course unipotent if and only if α ∈ Z. (More generally, one might consider
representations which are quasi-unipotent, i.e., such that the restriction of the representation
to some subgroup of finite index is unipotent. We won’t here.)

Local systems and a Lie algebra

We continue to suppose X is a smooth variety over a number field K. But now we also
assume that X can be embedded into a smooth proper variety X such that the complement
D = X \X is a normal crossings divisor (you can even assume it’s a strict normal crossings
divisor, that is, every component is itself normal), and such that H1(X,OX) = 0. Note
that only the last condition imposes any restriction: the others can always be satisfied by
Hironaka’s resolution of singularities.

The assumption on H1 means (I believe) that every vector bundle on X extends to
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a vector bundle on X. It definitely means that every local system (V,∇) on X extends
uniquely to X, where it can be written as (V0, d−ω for some ω ∈ Ω1(log D)⊗End V0 which
is integrable, i.e., dω = ω ∧ ω. (The log D reflects the fact that the connection must be
allowed to have simple, or “logarithmic”, poles along D. Recall the examples on Gm, where
ω = dz/z.)

By Hodge theory (?), every global p-form on a complete variety with at most logarithmic
poles (maybe along a normal crossings divisor) is closed. Thus integrability becomes just
ω∧ω = 0. (That looks like an empty condition, but remember that ω is a matrix of 1-forms.
Already when that matrix is 2× 2, the condition is nontrivial. Try it!)

We now proceed to reformulate the integrability condition ω∧ω = 0 in a more convenient
form. Before imposing it, we simply have

ω : (Ω1(log D))∨ → End(V0).

Now the sections of Ω1(log D) are just H1
dR(X), and the sections of the dual form the ho-

mology group HdR
1 (X). On cohomology, we have the cup product

∪ : ∧2Γ(Ω1(log D)) → Γ(Ω2(log D)).

Again, Γ(Ω1(log D)) = H1
dR(X), and Γ(Ω2(log D)) is contained in H2

dR(X). Composing the
cup product with that containment, then transposing, gives

∪T : HdR
2 (X) → ∧2HdR

1 (X).

Now ω can be viewed as a map ρ : HdR
1 → End(V ), and integrability of ω becomes the

condition that the composition

HdR
2
∪T

→ ∧2HdR
1 → End(V )

is zero, where the second map sends u∧v to the Lie bracket [ρ(u), ρ(v)] = ρ(u)ρ(v)−ρ(v)ρ(u).
To sum up, the data of a local system is the data of a vector bundle V equipped with a

representation of the Lie algebra

FreeLie(HdR
1 (X))/=(∪T ).

where FreeLie denotes the free Lie algebra on HdR
1 (X).

Reminder of what that means: given a vector space V , the free Lie algebra of V is the
smallest vector subspace of the symmetric algebra Sym· V containing V and closed under
Lie brackets. (We’ll give another characterization shortly.) When we mod out by the image
of ∪T , we are actually quotienting out by the ideal in the free Lie algebra generated by that
image (i.e., the smallest subspace of the free Lie algebra containing the image of ∪T , and
closed under taking the Lie bracket of any of its elements with anything in the entire Lie
algebra).

As mentioned earlier, we don’t actually want to consider all local systems, just the
unipotent ones. That is, we don’t want to allow arbitrary representations of the Lie algebra
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we just constructed, just unipotent ones. We can accomplish this by modifying the Lie
algebra to only allow unipotent representations.

Note that the free Lie algebra on a vector space admits a grading by what we will call
degree. Namely, the free generators have degree 1, and the Lie bracket of something in degree
i with something in degree j has degree i + j. Quotienting by the image of ∪T kills off some
elements which are homogeneous of degree 2, so the result still has a grading.

In terms of degree, a unipotent representation of our Lie algebra is one in which anything
of degree at least N acts trivially, for some sufficiently large N . Let ZN be the stuff of degree
at least N ; we will replace the Lie algebra with

Lie πdR
1 = lim

←
FreeLie(HdR

1 (X))/(=(∪T ) + ZN).

Of course, this is not yet honest, because we don’t have a group πdR
1 of which this can be

the Lie algebra!

Recovering the group

Having constructed what is supposed to be the Lie algebra of the de Rham realization of
the unipotent fundamental group, essentially by declaring that its representations are the
unipotent local systems, it is time to recover the group itself. There is a highly abstract
way of doing this kind of thing in general (more on this later), but this task is pretty
straightforward.

For a nilpotent Lie algebra, or in our case a pro-nilpotent Lie algebra, one can produce the
corresponding group by exponentiation, which is really to say using the Campbell-Hausdorff
formula. This formula is written down as follows: take two noncommuting indeterminates x
and y. Then

exp(x) exp(y) = exp

(
x + y +

1

2
[x, y] + · · ·

)
where everything on the right is in the free Lie algebra generated by x and y. Moreover, the
right side has only finitely many terms of any given degree. Thus if x and y are actually
taken in a nilpotent Lie algebra, the sum on the right becomes finite; if in a pro-nilpotent
Lie algebra, it becomes a convergent series. In any case, you can use it to define a group
structure on the symbols exp(x).

That’s how you compute in practice, but for conceptual purposes (and for proving that
the above recipe works!) there is a simpler description. Given a Lie algebra L, let UL
denote its universal enveloping algebra (the associative algebra Sym· L modulo relations
xy− yx− [x, y]; note that U FreeLie(V ) = Sym· V ). Let I be the augmentation ideal of UL,
i.e., the ideal generated by the elements of L. Let UL∧ denote the I-adic completion of UL.

The universal enveloping algebra of a Lie algebra L comes with a canonical coproduct
∆ : UL → UL ⊗ UL, defined by the relation

∆(v) = v ⊗ 1 + 1⊗ v v ∈ L.
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Observe that the set of v ∈ UL such that ∆(v) = v ⊗ 1 + 1 ⊗ v is itself a Lie algebra,
containing L; unless I’m mistaken, it is actually L itself, at least in characteristic 0. (In
characteristic p, it is the closure of L under the operation v 7→ vp.)

Given a coproduct on UL, we say x ∈ UL is grouplike if

∆(x) = x⊗ x.

Notice that for any grouplike element x, x − 1 ∈ I. In fact, the set of grouplike elements
indeed forms a group, and if L is (pro-)nilpotent, it is the same as the group we constructed
earlier.

Filtrations

(Warning: this section is completely garbled. Make sense of it at your own risk.)
Given that πdR

1 comes from the de Rham realization, it should carry weight and Hodge
filtrations. What might those be?

First note that a function f : X → Gm gives rise to a logarithmic differential df/f in
H1

dR(X). Also note that H1
dR(Gm) is canonically Z(−1), generated by dz/z for z a coordinate

on Gm. In general, H1
dR(X) will be a direct sum of copies of Z(−1).

We now have a projection Lie πdR
1 → Lie πab

1 = HdR
1 . This should be compatible with

any structures we define, like filtrations.
The Z filtration (the modified central descending series) we used to construct the Betti

realization of the unipoten fundamental group is motivic, so the corresponding graded ring
GrZ(Lie π1) is too. (Something happens here that I couldn’t follow.)

The weight filtration on Lie πdR
1 will turn out to be precisely the descending degree

filtration. That is, each step will be the set of terms of degree at least i for some i. The
Hodge filtration will go the other way: each step will be the set of terms of degree at most i.

(Some throwaway comment about what a mixed Hodge structure is follows, apparently
irrelevant to the sequel.)

4 The Betti-de Rham comparison isomorphism

Parallel transport and the Betti-de Rham comparison

We now describe the construction of the Betti-de Rham isomorphism, from a “motivic” point
of view. Instead of the fundamental group, it will be helpful to consider more generally
the (Betti) fundamental groupoid bPa of paths from b to a. For any fixed a and b, this
object is a principal homogeneous space for π1, and we can form the unipotent version as
Spec(lim→Q[bPa]/I

n)∨.
In the de Rham realization, this construction isn’t necessary, because there is a canonical

path from one point to another! The point is that because of our condition H1(X,O) = 0,
vector bundles with flat connection canonically trivialize, so it doesn’t matter what path you
use for integration.
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The way the comparison isomorphism should work is this: given a Betti path (i.e.,
an honest path on the topological space) from a to b and a vector bundle with integrable
connection (i.e., a representation of πdR

1 ), write it as the connection d−ω on a trivial vector
bundle (using the canonical trivialization from above); then parallel transport along the
Betti path gives an isomorphism of the fibres of the bundle at a and b, i.e., of V with itself.
That should give a map from bPa to πdR

1 .
Our task now is to give an “algebraic” version of parallel transport; the result ends up

involving iterated integrals. Say the Betti path γ is parametrized in terms of t, from t = 0
to t = 1. Given a vector v ∈ V at position t, its image under parallel transport to position
t + ∆t is, to a first-order approximation,

v + 〈ω, γ′(t)〉(∆t),

where the angle brackets denote contraction of a 1-form with a tangent vector. (Note that ω
is a 1-form with values in End(V ).) If t0 = 0 < t1 < · · · < tn = 1, then the parallel transport
morphism from a to b is approximately the composition of the linear transformations

0∏
i=n−1

(I + 〈ω, γ′(ti)〉(ti+1 − ti)).

Since ω is nilpotent, when we multiply this out all of the terms beyond a certain length
vanish. Thus when we take the limit as n →∞ and maxi{ti+1− ti} → 0, this product turns
into the expansion

I +

∫ 1

0

ω +

∫ 1

0

ω

∫ t

0

ω + · · ·

Tangential base points: Betti realization

We are considering P1−{0, 1,∞} because it has “good reduction”; modulo any prime p, the
morphisms Spec Z → P1

Z given by each of 0, 1,∞ have disjoint images. But this stops being
true as soon as we add an additional point, since over p = 2 there are no more points!

The upshot: we need to choose a base point from which to draw paths to other points,
in the Betti and de Rham realizations. However, we should not choose an actual Z-valued
point for this purpose or else we will encounter bad reduction. So instead we want to use a
tangent vector at 0 in place of the base point.

In the Betti picture, this amounts to taking a base point “infinitesimally close” to 0 in
some direction. More precisely, that means we take a point on the blowup of X(C) at 0. The
blowup is obtained by cutting out a small disc around 0, cutting a small disc out of a plane,
then gluing along the edges of the discs. That plane we used can be canonically identified
with the tangent space to the curve at 0. In the bargain, one gets a canonical generator of
πB

1 , namely the counterclockwise loop around 0.
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Tangential base points: de Rham realization

How do we make sense of the notion of a tangential base point in the de Rham realization?
That is, given a local system (V,∇) on our curve, how do we pull it back to the blowup?

We first extend (V,∇) canonically to (V ,∇), where V is a trivial vector bundle and
∇ = d − ω where ω has a simple pole at 0 and Res(ω) is a nilpotent endomorphism of the
fibre V 0. We then extend to the tangent space by taking the constant vector bundle with
fibre V 0 and connection d−Res(ω)du/u, where u is a linear coordinate on the tangent space.

The comparison isomorphism

Note: we will shamelessly exploit the fact that πdR
1 in our case is canonically independent of

the base point, in order to simplify the description.
The comparison isomorphism should be a map, from the set of paths from the basepoint

x to itself, to πdR
1 , at least after tensoring with C. That is, we are looking for

comp : πB
1 ⊗ C ∼→ πdR

1 ⊗ C.

Given a representation of πdR
1 , that is, a unipotent local system V , we also have a

representation of Lie πdR
1 ; recall that the latter was constructed as the free Lie algebra on

H1(X) modulo relations obtained from H2(X).
For X = P1−{0, 1,∞}, the cohomology H1

dR admits the basis dz
z
, dz

1−z
. In homology HdR

1

(i.e., the dual of cohomology), we have elements e0 = Res0, e1 = Res1, e∞ = Res∞ such that
e0 + e1 + e∞ = 0.

We now have a tautological 1-form with values in HdR
1 , namely

ω =
dz

z
e0 +

dz

1− z
e1 ∈ Ω1(log D)⊗H1 ⊂ Ω1(log D)⊗ Lie πdR

1 .

Given a representation ρ : Lie πdR
1 → End(V ) (necessarily with nilpotent image), ρ(ω) gives

a 1-form with values in End(V ), that is, (V, d − ρ(ω)) is a unipotent local system. (This is
the canonical trivialization we keep mentioning.)

To describe comp, we must for starters give for each Betti path γ and each representation
ρ : Lie πdR

1 → End(V ) an element of End(V ) in a natural way. Namely, we compute the
parallel transport along γ of ρ as described above. That gives us a map from πB

1 to the
universal enveloping algebra of Lie πdR

1 , which is the completion (with respect to the degree
grading) of the free associative algebra on e0 and e1, also notated Assoc(e0, e1)

∧.
For this map to actually have image in πdR

1 , its image must consist of grouplike ele-
ments. Recall what this means: there is a coproduct ∆ : Assoc(e0, e1)

∧ → Assoc(e0, e1)
∧ ⊗

Assoc(e0, e1)
∧ with ∆(e0) = e0 ⊗ 1 + 1⊗ e0 and ∆(e1) = e1 ⊗ 1 + 1⊗ e1. (In fact, it sends x

to x⊗ 1 + 1⊗ x for any x ∈ Lie πdR
1 .) Then the grouplike elements are the set

{g ∈ Assoc(e0, e1)
∧|∆(g) = g ⊗ g};

these do indeed form a group under multiplication, and that is what we are calling πdR
1 .

In fact, parallel transport always produces grouplike elements. (There should be a “pure
thought” reason for this, but I wasn’t able to see it.)
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A computation

We now compute the action of parallel transport along the path γ I described earlier. First
we must explain a bit more precisely what γ is doing.

As noted earlier, γ is actually defined on the topological blowup of P1(C) at 0 and 1.
This blowup is obtained by removing a small disk at 0 and 1, and glueing along this disk
a copy of the tangent space at the point with a disk removed around the point. Our path
starts at the point 1 on the tangent space at 0, runs along the line towards 0 to the glueing
disk, then along the real line in P1(C) to the glueing disk around 1, then runs back to 0 on
the tangent space at 1.

Remember that given a representation ρ : Lie πdR
1 → End(V ), the canonical 1-form

on P1(C) is given by d − ρ(e0)
dz
z
− ρ(e1)

dz
1−z

. On the tangent spaces at 0 and 1, each

with parameter u vanishing at the center, the canonical 1-form is given by d− ρ(e0)
du
u

and
d + ρ(e1)

du
u

, respectively.
We now compute the parallel transport along γ in three steps. Say we are using the

radius ε for the glueing disks. First, we integrate in the tangent space at 0 from 1 to ε to
get exp((log ε)ρ(e0)). Last, we integrate in the tangent space at 1 from 1 − ε to 0 to get
exp((log ε)ρ(e1)). So we really have

exp((log ε)ρ(e1))h exp((log ε)ρ(e0))

where h is the parallel transport from ε to 1− ε.
We know h is the image under ρ of a grouplike element of Assoc(e0, e1)

∧; let us try to
read off its coefficients and see how they behave as ε → 0. Since 1/(1 − z) =

∑∞
n=0 zn, we

can rewrite the parallel transport as

1 +
1−ε∑

ε

ω(t1) dt1 +
1−ε∑

ε

ω(t1)

∫ t1

ε

ω(t2) dt2 dt1 +
1−ε∑

ε

ω(t1)

∫ t1

ε

ω(t2)

∫ t2

ε

ω(t3) dt3 dt2 dt1 + · · · ,

where each term is in Assoc(e0, e1)
∧.

We would like to extract the coefficient in this sum of ei1 · · · eik , where ij ∈ {0, 1} for
each j. First suppose i1 6= 1 and ik 6= 0. Then in any term of the sum which contributes a
multiple of ei1 · · · eik , we pick up an e1 on the right from the innermost integral, i.e., from∫ t

ε

dz

1− z
=

∫ t

ε

∞∑
n=0

zn dz;

as ε → 0, this tends to ∫ t

0

∞∑
n=0

zn dz =
∞∑

n=1

tn

n
.

If the next term to the left is e0, this becomes∫ t

0

dz

z

∞∑
n=1

tn

n
=
∞∑

n=1

tn

n2
;
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likewise, if there are m copies of e0 immediately to the left of the rightmost e1, the corre-
sponding m + 1-fold integral is

∑∞
n=1 tn/nm+1.

Going back to our expression ei1 · · · eik , suppose again that i1 6= 1 and ik 6= 0. Let
s1−1, s2−1, . . . , sl−1 be the lengths of the runs of e0’s that separate consecutive occurrences
of e1. (Yes, these could be zero, but at least we have s1 − 1 6= 0.) Then the integral we get
after the second e1 is∫ t

0

dz

1− z

∞∑
n=1

zn

nsl
=

∫ t

0

∑
m,n:m≥0

zn+m

nsl
=

∑
m,n:m≥1

tn+m

nsl(n + m)
.

Likewise, the full multiple integral comes out to∑
m1,...,ml≥1

tml+···+m1

msl
l (ml + ml−1)sl−1 · · · (ml + · · ·+ m1)sl+···+s1

.

To lighten notation, put ni = ml + · · · + mi. Then we conclude that the coefficient of
em1
0 e1e

m2
0 e1 · · · eml

0 e1 is

lim
t→1

∑
n1>···>nl

tn1

ns1
1 · · ·n

sl
l

=
∑

n1>···>nl

1

ns1
1 · · ·+ nsl

l

,

a/k/a the multiple zeta value ζ(s1, . . . , sl). (Note this converges because s1 ≥ 2 by our
assumption that ei0 6= 1.)

What about the bad terms?

Warning: there are a number of missing details here, especially on the subject of whether
certain limits converge.

To recap: we have computed that on P1 \{0, 1,∞}, the parallel transport from ε to 1− ε
yields an element of πdR

1 ⊂ Assoc(e0, e1)
∧ in which the coefficient of es1−1

0 e1e
s2−1
0 e1 · · · esk−1

0 e1

for s1 ≥ 2 and s2, . . . , sk ≥ 1 is equal to the multiple zeta value ζ(s1, . . . , sk). So what does
this tell us about comp(γ)?

It can be shown that

exp((log ε)ρ(e1)))h exp((log ε)ρ(e0))

converges as ε → 0 to the image under ρ of some element T of πdR
1 ⊗ C; this is what we

mean by “parallel transport along γ”. (I haven’t verified the convergence completely, except
in the case below.) The coefficient of e0 in this is

(log ε) +
1−ε∑

ε

dz

z
= log(1− ε),

which tends to 0 as ε → 0. Likewise the coefficient of e1 tends to 0 as ε → 0.
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For any term of the form es1−1
0 e1e

s2−1
0 e1 · · · esk−1

0 e1 with s1 > 1, i.e., a term starting with
an e0 and ending with an e1, any corresponding term in

exp((log ε)ρ(e1)))h exp((log ε)ρ(e0))

must come directly from h, since the factor on the left either does nothing or puts an e1 on
the right, and ditto on the right. So the coefficient of such a term is precisely the multiple
zeta value ζ(s1, . . . , sk).

For other terms, one now uses the following algebra fact (left to the reader): since the
parallel transport of γ is grouplike and its coefficients of e0 and e1 are both zero, all of its
coefficients are determined by the coefficients of the terms that start with e0 and end with
e1. Each coefficient comes out being some polynomial in the multiple zeta values (possibly
a rational linear combination, but I wasn’t clear on this).

Now we have computed the parallel transport along essentially a path from 0 to 1 (or
rather, from one tangential base point to another). To relate this to πB

1 , we need to write
loops from a single base point to itself in terms of this path. We will use the tangential
base point ~01 at 0 in the direction of the positive real line. Our generators of πB

1 will be a
counterclockwise loop around 0, and γ followed by a counterclockwise loop around 1 followed
by γ−1. We map these to

2πie0 and T−1(2πie1)T,

respectively. This yields the desired map

comp : πB
1 ⊗ C ∼→ πdR

1 ⊗ C.

5 Complements

5.1 The infinite Frobenius

If X is a variety over R, then any realization of X is equipped with a canonical involution
F∞ given by complex conjugation. How does it look in the Betti and de Rham realizations?

In the Betti realization, F∞ acts as conjugation of paths on X(C); call this σB. In the
de Rham realization, F∞ acts as conjugation of complex-valued differential forms; call this
σdR.

The main point here is that if ω is an algebraic differential over C and Z is a path in
X(C), then ∫

Z

ω =

∫
Z

ω,

where Z is the path obtained from Z by pointwise conjugation. That shows that the two
operations we described are compatible with the Betti-de Rham comparison. For a general
realization, we have the factorization F∞ = σBσdR.

For a variety X over Q, the involution F∞ plays the role of a Frobenius automorphism at
the infinite place. There is also a Frobenius automorphism at each finite prime p, which act
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naturally on X over Qp. This is the so-called “crystalline Frobenius”, which was discussed
further in the student lecture.

5.2 Motivic considerations

Very, very loosely speaking, a cohomological construction for algebraic varieties is said to
be “motivic” if it depends purely on geometric considerations, so that it can be canonically
defined in all realizations. This begs the question of what a “motive” is, a question we will
make no attempt to answer. Suffice to say for the moment that motives are supposed to be
objects in an abelian category that behave like geometrically defined pieces of cohomology
spaces, and which admit “realizations” such as the Betti and de Rham realization. For
example, there should be a motive attached to each scheme X, whose realizations are the
total cohomologies of X; this motive should also decompose as a sum of motives whose
realizations are the individual cohomology spaces of X.

A bit more precisely, there exists a category of motives of mixed Tate type over Spec Z
(or Spec Q), coming from a triangulated construction by a construction à la Voevodsky. It
also makes sense to look at motives of mixed Tate type over a scheme X.

The category of mixed Tate motives over X is a Tannakian category, so we can con-
struct its automorphism group and call it the “motivic Galois group” of a scheme X. Then
realizations of X induce fibre functors on the category of mixed Tate motives, giving special-
izations of the motivic Galois group. By Tannaka duality (à la Saavedra), the category of
finite dimensional representations of one of these specializations is equivalent to the category
of realizations of motives.

For example, in the de Rham realization, we get a group GdR whose category of finite
dimensional representations is equivalent to the category of vector bundles on X with inte-
grable connection and unipotent monodromy. And in fact, one can read off this group by
simply taking the group of automorphisms of the latter category, i.e., functors to itself that
commute with direct sum and tensor product. The result is a pro-algebraic group (the “pro”
needed because it is an inverse limit of algebraic groups but possibly not algebraic).
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