THE MODULAR CURVES X,(11) AND X;(11)

TOM WESTON

This paper is intended as a brief introduction to the theory of moduli spaces
through the concrete examples of certain modular curves. The motivating question,
which we seek to answer, is whether or not there exist any rational elliptic curves
over Q with a rational point of order 11. This problem, which seems quite hopeless
in terms of explicit polynomials, turns out to have a beautiful solution in terms of
modular curves.

The portions of this paper dealing with explicit computations for Xy(11) are
based on a talk given by Matthew Emerton, incorporating some modifications by
Keith Conrad and Robert Pollack. Throughout the paper all algebraic curves are
assumed to be smooth and projective. We give very few complete proofs; to give
complete details would have made the paper many times longer, and we will be
content to give the main ideas.

1. THE j-LINE

For this section we are interested in classifying elliptic curves up to isomorphism;
if K is a field, we will denote by Ell(K) the set of isomorphism classes of elliptic
curves defined over K. Here we consider two elliptic curves E; and E; over K to
be isomorphic if there is an isomorphism E; — E, defined over K.

We will begin with a description of Ell(C). Recall that an elliptic curve over
C can be realized as C/A for some lattice A C C; here by lattice we mean a free
Z-module of rank 2 generated by two R-linearly independent complex numbers. If
w1, wo are complex numbers which are linearly independent over R, we will write
(w1, we) for the lattice which they generate. Two complex elliptic curves C/A; and
C/A, are isomorphic (over C) if and only if the lattices A; and A, are homothetic;
that is, if there is some a € C* such that aA; = As. (To go from the C/A form to
the usual Weierstrass form y? = 2® 4+ az + b one uses the Weierstrass functions and
its derivative; for details on all of this, see [14, Chapter 6] and [15, Chapter 1].)

Using this description of complex elliptic curves, we see that in order to get a
description of Ell(C) it will suffice for us to classify lattices up to homothety. We
summarize the construction; see [13, Chapter 7, Sections 1 and 2] or [15, Chapter
1, Sections 1 and 2] for more details. The first step is to normalize the lattices
somewhat. Whenever we are dealing with a basis {w1,ws) of a lattice A, we will
assume that wy,wq are ordered so that Imwy/w; > 0. This lattice A is homothetic
to the lattice A, = (1,7), where 7 = wa/w;; thus we can restrict our attention to
lattices of this form A, with 7 € H, H denoting the upper half plane in C.

Two such lattices can still be homothetic. To determine when this happens, we
consider a single lattice A,. The possible ordered bases of A are precisely the bases
Z ) € SLy(Z). (Recall that SLy(Z) is the group of 2 x 2
matrices with integer entries and determinant 1. Here the positive determinant
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condition insures that our basis will still satisfy g:j:g € H.) These lattices are in

ar+b and these are the only lattices

turn homothetic to the lattices A with 7' = £257,

of this form which are homothetic to A,.
We rephrase our results as follows: we define an action of the group SLy(Z) on

H by
a b _ar+b

( c d ) [r—h
(One checks easily that this really is a group action.) We have a map from H to
the set of homothety classes of lattices given by 7 — A, and two lattices A, and
A, are homothetic if and only if there is some v € SLy(Z) with y7 = 7/. That is,
we can regard isomorphism classes of lattices as parametrized by the orbit space
SLo(Z)\H. (We write the group in this quotient on the left since it acts on H on
the left.) This in turn allows us to identify isomorphism classes of complex elliptic
curves with elements of SLa(Z)\H:

SLy(Z)\H +— EI(C)

T — C/A;
22 Cf (wr,wn)
w1
One can show (see [13, Chapter 7, Theorem 2] or [15, Chapter 1, Corollary 1.6])
that SLy(Z) is generated by the two matrices

s=(1 %) 7=(5 1)

these act on H by S(7) = —1/7 and T'(7) = 7+1. It follows easily (see [13, Chapter
7, Theorem 1] or [15, Chapter 1, Proposition 1.5]; in fact, one usually proves the
last two facts simultaneously) that a fundamental domain for SL,(Z)\#H is given
by the following region: (For this region to be a fundamental domain just means
that every SLy(Z)-orbit on H corresponds to a unique point of the region.)
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Note that on identifying the edges of this region one appears to obtain a sphere
with a single point removed (this point being infinitely far up the imaginary axis).

On inserting this point (which is called the cusp at infinity and written as i00)
one obtains (at least topologically) a sphere. In fact, it is possible to define a
complex structure on this space (this is the obvious complex structure at most
points, although one has to be a little careful at p, ¢ and the cusp ico), making it
into a compact Riemann surface; see [14, Chapter 1, Section 2]. (A Riemann surface
is essentially just a topological space for which every point has a neighborhood
isomorphic to an open subset of C.) When regarding it from this point of view,
we will denote this Riemann surface by X (1); denoting by C the set containing the
cusp, we have

X(1) = (SLy(Z)\H) UC.

Our description above shows that it is isomorphic the the Riemann sphere P!(C).

The Riemann sphere is usually obtained by adding a single point at infinity to the
complex plane C. From this point of view it is easy to determine the meromorphic
functions on P}(C): let f(z) be such a function, which we regard as a function on
C. Since f(z) does not have an essential singularity at infinity, it only has poles in
some bounded region of C and therefore has finitely many poles. We can multiply
f(2) by polynomials to eliminate these poles, and we are left with a function g(z)
which has a pole at infinity and no other poles. Suppose that this pole has order
n. The standard function with an order n pole at co is 2™, which is holomorphic
on the rest of P!(C). So subtract from g(z) an appropriate multiple of 2™ to obtain
a function h(z) with a pole at infinity of order at most n — 1 and no other poles.
Continuing in this way we find that we can subtract a polynomial from g(z) to
obtain a function which has no poles on C or at infinity; by Liouville’s theorem
such a function is a constant. Thus g(z) is a polynomial, and f(z) is rational
function. We conclude that the field of meromorphic functions on P!(C) is just the
field C(2) of rational functions in z. (The fundamental reason why there are so few
meromorphic functions on P!(C) is that it, unlike C, is compact.)

We conclude that the function field of X (1) is generated over C by a single
transcendental function. Regarding points of X (1) as isomorphism classes of elliptic
curves C/A, the standard choice of such a function is the function j which sends
an elliptic curve to its j-invariant, which is a complex number which classifies it up
to isomorphism. (See [14, Chapter 3, Section 1].) Regarding j as a function of the
coordinate 7 on H, we have the identity

() -
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for Ccl Z € SLy(Z), since ‘gig and 7 give rise to the same point of X (1).

This means that j is a modular form of weight 0, otherwise known as a modular
function. In particular, j(7 + 1) = j(7), so we can write out a Fourier expansion
for j in terms of ¢ = €?™*". It can be shown that

1
j(r) = p + 744 + 196884q + 21493760¢> + - - - ;

see [15, Chapter 1, Remark 7.4].

Recall that the algebraic curve P} also has a function field C(z). This suggests
that we should be able to regard the Riemann sphere as an algebraic curve. In
fact, both complex algebraic curves and compact Riemann surfaces are uniquely
determined by their function fields, which are finitely generated field extensions of
C of transcendence degree 1. This sets up a bijection between complex algebraic
curves and Riemann surfaces: we associate to the (unique) complex algebraic curve
X with function field K the (unique) Riemann surface X’ with function field K.
This bijection turns out to respect all of the other relevant structure as well; in
particular, X and X’ have the same sets of points: X (C) = X'(C).

In summary, we have seen that the set of isomorphism classes of complex elliptic
curves is in natural bijection with the non-cuspidal points of a complex algebraic
curve X (1)¢:

X(1)c(C) «— El(C) UC.
We have also seen that X (1) is isomorphic to the projective line P¢.

Of course, the curve Pl can actually be defined over Q as the projective line H”b
with function field Q(5); the fact that CQ(j) = C(j) means that P¢,(C) = P¢(O).
Thus, setting X (1)q = Pg, we have a bijection

X(1)(C) «— EII(C) UC.

Since we have defined X (1)g over @, one might hope that we also obtain a bijection
between the Q-valued points of X (1)g and isomorphism classes of elliptic curves
over Q. Unfortunately, this is not the case: there is a map

El(Q — Pg(Q) = QU {oc}
sending an elliptic curve to its j-invariant, but it is not a bijection. This is because
if two elliptic curves over Q have the same j-invariant it does not mean that there
exists an isomorphism between them defined over Q, but only that such an isomor-
phism exists over Q. Thus the non-cuspidal points X (1)g(Q) classify elliptic curves
over Q only up to isomorphism over Q.

2. MODULAR PAIRS

We now seek to redo the construction of the previous section for a slightly dif-
ferent class of objects. We define a modular pair over a field K to be a pair (E,C)
of an elliptic curve over K and a cyclic subgroup C of E(K) of order 11. We fur-
ther require that every o in the Galois group Gal(K/K) maps C to itself. This is
certainly the case if C' actually lies in E(K), but this is not necessary; essentially
all that we are requiring is that each o sends each element of C' to a multiple of
itself. Two modular pairs (E1,C1) and (E2,C2) over K will be considered to be
isomorphic if there is an isomorphism of F; with Es, defined over K, which sends

Cl to 02.
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Vi1

FIGURE 1. The 11-torsion on a complex elliptic curve

We begin as before with the situation over the complex numbers. Here we can
consider modular pairs as pairs (C/A, C), and two pairs (C/A1,C1) and (C/Az, Cs)
are isomorphic if there exits a complex number « such that aA; = Ay and aCy; = Cy
(mod Az)

If (C/A,C) is a modular pair, we can regard C + A as a complex lattice in its
own right; we have A C C + A, and the condition that C has order 11 means
precisely that (C + A)/A has order 11. We can therefore think of modular pairs
as pairs A; C A, of complex lattices such that A,/A; has order 11; the associated
modular pair is (C/A;,Az/A;1). By the structure theorem for finitely generated
abelian groups we can find a basis {w1,w2) of Ay such that < 1w1,w2> is a basis
for Ao; as usual we can also assume that wy/w; has p0s1t1ve imaginary part. This
modular pair is 1som0rphlc to the modular pair (C/A,, 15Z) (corresponding to the
inclusion of lattices A, C 112+ A7) with 7 = wy /wy € H; the isomorphism is given
by the homothety w;' : C/A; — C/A, .

Combining all of this, we can associate to every modular pair ((C/ A, C) a complex
number 7 € H such that (C/A, C) is isomorphic to the (C/A., Z). The difference
between this and the situation of the previous sectlon is that 7,72 € H give rise to
isomorphic modular pairs if and only if (C/A,,, %) = (C/A,,, 17Z) as modular
pairs.

To sort out this condition, we proceed as in the previous section and fix one 7.

The possible bases for A, are those of the form (cr + d, ar + b) with ( Z Z ) €

SLy(Z). These in turn are associated to lattices A, with 7/ = %’;. However, not

all such 7' correspond to 7 when the extra structure of the cyclic subgroup of order

11 is taken into account.

We must determine for which ( CCL Z ) the modular pair (C/A,, 17Z) is iso-

morphic to the modular pair (C/A/, &
by multiplication by cr + d; this homothety takes

Z). The homothety of A, and A, is given

lllZ to 1 174 if and only if

(e + d) Z = —Z (mod A;).
Since d is an integer and 1 and 7 are linearly independent this is the same as
requiring that <& is a multiple of 7. Of course, this is the case if and only if 11

[
b > € SLy(Z) takes (C/A;,Z) to

divides ¢. We conclude that a matrix ( Ccl d

(C/A;+, 4 7) if and only if 11 divides c.
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Define I'g(11) C SL3(Z) to be the subgroup of SL2(Z) of such matrices:

To(11) = {( ‘z Z ) €SLy(Z)|¢=0 (mod 11)}.

Our arguments to this point have shown that we can identify modular pairs over C
with points of H modulo the action of T'g(11); that is, we can identify them with
the orbit space T'o(11)\H:

1
T —> (C/AT, ﬁZ>

We would like a description of I'g(11)\ as a Riemann surface. To do this we
will need a fundamental domain. It can be shown that the matrices

r=(o1) v=(h3) v=(n )

generate I'g(11). Using this and a little care one can show that the region below is
a fundamental domain for the T'g(11)-action on H.

//\

When one identifies the lines 7 = 0 and 7 = 1, the region can be drawn in the
following simpler way:

@ O

We see now that H\I'g(11) is almost a torus, except that it is missing two points.
We call the missing interior point the cusp at infinity and the missing corner point
the cusp at zero, and we let Co denote the set of these two points. Once these
points are added, I'g(11)\H is a torus. In fact, as with SLo(Z)\H, it is possible to
give I'g(11)\H the structure of a Riemann surface which we denote Xo(11); see [7,
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Chapter 11, Section 2]. From our construction, we have a bijection

It is important to note that we add the cusps only so that X¢(11) becomes
compact; they do not correspond to honest elliptic curves. In particular, after we
have defined X((11) as an algebraic curve over Q, the cusps will yield two rational
points which don’t actually correspond to elliptic curves.

3. Xo(11) AS AN ELLIPTIC CURVE OVER Q

The first key to using Xo(11) to analyze elliptic curves over Q is to show that
it can actually be realized as a curve defined over Q. As it is, we have X¢(11) as
a Riemann surface. As we have said before, every Riemann surface corresponds to
a complex algebraic curve, so we can also regard Xo(11) in this way; when we do
so we will write it as X¢(11)c. Let L be its function field; it is a finitely generated
extension of C of transcendence degree 1.

To show that Xo(11)¢ can actually be defined over Q, we must find a finitely
generated field extension K of Q of transcendence degree 1 such that CK = L.
Indeed, we can then define Xy(11)g to be the algebraic curve corresponding to K;
the fact that CK = L will insure that X¢(11)g(C) recovers our previous complex
algebraic curve Xo(11)c.

There are several approaches to defining the field K. The first approach begins by
explicitly determining L as the field of meromorphic functions on Xg(11) regarded
as a Riemann surface. To do this, we must exhibit some rational functions on
Xo(11). The first is the function j we had on X(1); it still makes sense as a
function on Xo(11) since I'g(11) C SLo(Z).

Let j11(7) = j(117). We claim that ji; is also a function on X,(11). To show

this, we must check that
. [(aT+b\ . (7)
J11 po—— =Ju
b

for all ( Z € To(11), for then j1; descends from a function on H to a function

d
on [o(11)\H = Xo(11). We compute

. at +b . 11aT—}—b
Ju cr+d =J cr+d

= j1(7)

. a 11b .. . .
since ( /11 d ) € SLy(Z) and j is SLa(Z)-invariant.

We have now exhibited two meromorphic functions on Xy(11). One can show
that L = C(j, j11); that j11 is a root of a polynomial ®(z) in Z[j, z]; and that ®(z)
is irreducible as a polynomial over C(j). See [7, Chapter 11, Section 6].

One can use the above assertions to realize X((11)c as an algebraic curve over
Q. Indeed, we simply define K = Q(j)[j11]/®(j11), where we are regarding j as an
abstract transcendental element and ji; as a formal variable; let Xo(11)p be the
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associated algebraic curve over Q. This makes sense, since ®(z) has coefficients in
Z[j]- The fact that ®(x) is irreducible over C(j) insures us that CK really is just
L = C(j)[j11]/2(j11)-

There is a second approach to defining Xo(11)g. This approach does not use the
Riemann surface description of Xy(11) at all. We only sketch the main ideas; see
[12, Section 1] for details. We begin with the elliptic curve E

27t 27t
t—1728"  t—1728
defined over the field Q(¢). This curve has the property that its j-invariant is just
t. Let Q(t, E[11]) be the extension of Q(t) generated by the coordinates of the
points of E of order 11. Fixing a basis P,Q of E[11], we can regard E[11] as a
two dimensional vector space over Z/11Z. Gal(Q(t, E[11])/Q) acts on E[11] in a
natural way, and we therefore obtain a map

Gal(Q(t, E[11])/Q) — Aut(E[11]) = GL(Z/11Z),

(the isomorphism coming from our fixed basis P, ()) which one easily sees is injective.
It is a much deeper fact that it is actually an isomorphism.

Let H be the subgroup of GLy(Z) which maps the cyclic subgroup generated by
@ to itself; one finds that

= {( - ) la,d € (Z/llZ)*,beZ/llZ}.

This corresponds to a subgroup of Gal(Q(¢, E[11])/Q(t)) by our above isomorphism,
and we let K be the fixed field of Q(¢, E[11]) by this subgroup. One defines Xy(11)g
to be the algebraic curve over Q corresponding to K. Of course, one now has to
show that K really is the same as the field we constructed before; this amounts to
getting a better understanding of the polynomial ®(z).

Using either of the two methods, we have shown that the Riemann surface Xo(11)
can be represented by an algebraic curve X(11)p over Q. Recall that we found
that the Riemann surface Xo(11) is a torus; that is, it has genus 1. Since the
complex points on X(11)g yield a space of genus 1, it follows that X¢(11)g itself is
an elliptic curve. Xo(11)g therefore has a Weierstrass equation; we will determine
what it is in the next section.

Now that we have realized X((11)g as a curve over QQ, we can ask if our descrip-
tion of the points on this curve has the same interpretation it had over C. That is,
we can ask if the points Xo(11)g(Q) correspond to pairs (E,C) of elliptic curves
over Q and cyclic subgroups of order 11 stable under Gal(Q/Q), up to isomorphism
over Q. Unfortunately, this does not quite work out; there is a natural map

y? = da® —

{modular pairs (E,C) over Q up to isomorphism} — X(11)g(Q) — Co

but it is a priori not necessarily a surjection or an injection. We will have more to
say about these rational points later.

4. AN EQUATION FOR X(11)

Since Xo(11)g is an elliptic curve defined over Q we can hope to find an equation
for it. This turns out to be a fairly involved exercise in modular functions. One
could attempt to carry out these calculations with the modular functions j and ji1
which we have already introduced, but it turns out that the coefficients are so large
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that computation becomes difficult. Instead we will introduce some other modular
functions. We omit most of the details.

Our basic method is as follows: given an abstract genus 1 curve E with a given
point O, one determines a Weierstrass equation

y2 +a12y + azy = 3+ a2$2 + a4x + ag

by finding functions z and y on E which have poles of order 2 and 3 at the point O
of E, respectively. The Riemann-Roch theorem shows that the space of functions
on E with poles of order at most 6 at O and no other poles has dimension exactly
6; since we have the seven functions y2, zy,y, 2%, 2, z, 1 all with poles of order at
most 6 at O and no other poles, they must satisfy a linear relation. Renormalizing
z and y one obtains a Weierstrass equation as above; see [14, Chapter 3, Section
3] for details. We must find such functions z and y and then determine the linear
relation.

We first exhibit some modular forms of weight 2 for I'g(11); recall that these are
functions f: H — C such that

f((‘c‘ Z)T) = (cr +d)2f(7)

for all ( Ccl Z ) € Tp(11). The first is constructed as a theta series (see [13,

Chapter 7, Section 6] for a similar construction): we let Q(z,y) = x? + zy + 3y> be
a quadratic form of discriminant 11 and define rg(n) to be the number of integer
solutions (z,y) to the equation Q(z,y) = n. Set

Oo(1) =Y _re(n)g"
:1+2q+4q3+2q4+4q5+6q9+2q11+4q12+8q15+

where ¢ = €2™" as before. One uses the Poisson summation formula to show that

6o (( “ ! )T> = (e + d)fg(r)

for all ( Z 2 ) € To(11); 63 (7) is therefore a modular form of weight 2 for To(11).

There is another well known modular form of weight 2 for T'y(11)
hr)=q (1 -g¢")?1—g")?
n>1
=¢-2 - +2¢" ++2¢° - 2¢" - 2¢° - 2¢"° + -

see [7, Chapter 8, Corollary 8.9 and Chapter 9, Section 4, Example 5]. The first
modular function we will use is

0% (1
Fo =505

1
= + 6+ 17q + 46¢° + 116¢° + 252¢* + 533¢° + 1034¢5 + 1961¢" + - - -

Since both 0(29 and h have weight 2, F' will have weight 0 and thus satisfies

F((‘c’ Z)T)ZF(T)

7
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for all ( Ccl g ) € T'p(11). As we saw before, this means that F' defines a mero-

morphic function on the Riemann surface X (11).
To obtain a second modular function, we begin with q%, which one easily check

(from the fact that F'is a modular function) is also modular of weight 2 for T'o(11).
We set

g (7)
h(r)

2
= 7 4 +12 + 116q + 597¢° 4 2298¢> + 7616¢" + 22396¢° + - - -

G(r) =

—

As with F(7), G(7) defines a meromorphic function on Xq(11).

Let us choose to make the cusp 700 the identity point on the elliptic curve Xo(11).
We must find linear combinations of F' and G with the required poles at ico and
no other poles. It is clear from the Laurent series above that F' has a pole of order
1 and G has a pole of order 2 at 7 = i00 (which corresponds to ¢ = 0). It is also
not too hard to check that F' and G have no other poles on . Unfortunately, it
turns out that they do have poles at the cusp 7 = 0 (where ¢ = 1) and we will have
to account for these poles.

We do this using the Atkin-Lehner involution w. This is an automorphism of H
given by 7 — % One checks easily that it is compatible with the action of I'g(11)
on H, so it yields an involution w of T'g(11)\H = Xo(11). Note that w interchanges
the cusps 7 = 0 and 7 = 40o. It can be shown using a trick involving the Poisson
summation formula that Fow = F and Gow = —G. To find a candidate function
for z, then, we need to find a polynomial p(u,v) such that p(F,G) starts with q%
and p(F,G) o w = p(F,—G) has no negative powers of g. This is an exercise in
linear algebra; one of the simplest such polynomials is p(u,v) = (u? — v — 10v)/2,
which yields

12
a::q—2+a—1+5q+8q2+q3+7q4—11q5+10q6+---

T ow = 22 4 242q 4 1210¢? + 4598¢> + 15246¢" + 44770¢° + 121484¢° + - - -

We find y in a similar way; the polynomial p(u,v) = (—uv + u® — 10u? — 22u) /2
works and yields

1 1
e +q§2+?7+13+42q+66q2+24q3+72q4—70q5+---
yow = 121 4 1331q + 7986¢> + 37268¢> + 149072¢* + 531069¢° + - - -

y:

To determine the polynomial satisfied by z and y we start with

10 89 287 506 1111
y2—m3:q—5+q—4+q—3+q—2+T+2606+3498q+4729q2+---
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and successively add multiples of zy, 22, y and = to cancel off the rest of the poles.
Thus the next terms are
11 33 66 121

y =2 —10oy=—— — S+ 5 +— —264+198q+ -
¢ ¢ g q
11 88 187
y2—m3—10my+11x2=q—3+q—2+7+l43+462q+726q2+---

y? —2® — 10zy + 1122 — 11y = 0
We have therefore found the Weierstrass equation
y? —10zy — 11y = 23 — 1122,

This equation can be written in a different form which is in more common usage:
replacing y by y + 5z — 19 and z by = — 5 yields the standard form

v +y =2® — 2% — 10z — 20.

5. RATIONAL POINTS ON X(11)

At this point we have found that X((11) can be represented by an elliptic curve
over (9, and that an equation for this elliptic curve is

v +y =2 — 2% — 10z — 20.
It is easy to determine the torsion subgroup of this curve: it is the group of order 5
Xo(ll)@((@)wfs = {Oa (57 5)1 (167 _61)7 (16, 60)7 (5a _6)}

The rank of X(11)g(Q) is more difficult to determine, although there are methods
to compute it. One finds (see [2, p. 110] that Xo(11)o(Q) has rank 0, so that

Xo(11)o(Q) = {0, (5,5), (16, —61), (16, 60), (5, —6)}.

Two of these rational points were expected: they correspond to the cusps. Since
X0(11)p(Q) is not the same as Ellg(Q), we can not at the moment give good
interpretations of the other 3 points. Note that even if they do correspond to
elements (E, C) of Elly(Q), we can not be sure whether or not there are any elliptic
curves over (Q with rational 11-torsion; indeed, all we would know is that there
exists a rational elliptic curve E and a point P € E[11] such that o(P) is a multiple
of P for all o € Gal(Q/Q).

6. REFINED MODULAR PAIRS AND X; (11)

Although we developed a good theory of the modular curve Xo(11), it ended
up not being quite good enough to answer the question of whether or not there
exist elliptic curves over Q with rational 11-torsion. In order to determine this, we
will consider classifying a different collection of pairs: we define a refined modular
pair over a field K to be an elliptic curve E defined over K together with a point
P € E(K) of exact order 11. Two such pairs (E;, P1) and (Es, P») are said to
be isomorphic if there exist an isomorphism of F; and FE», defined over K, which
sends P; to P». We will write Ell; (K) for the set of isomorphism classes of refined
modular pairs (E, P) over K. The question of the existence of rational elliptic
curves with rational 11-torsion is precisely the question of whether or not Ell; (Q)
is nonempty.

As usual, we begin by analyzing Ell; (C) using lattices. First one normalizes the

lattices to reduce to considering refined modular pairs of the form (C/A,, ﬁ) with
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T € H. Proceeding as with Ellg(C), one finds that two such pairs (C/A,, %) and

(C/A++, &) are isomorphic if and only if there is a matrix ( Z

(a b) ,
c d)" =T

and a,d =1 (mod 11) and ¢ =0 (mod 11). We will write I'; (11) for the subgroup
of SLy(Z) of such matrices; our results to this point are that there is a bijection

T — ((C/AT, %)

I'1(11) turns out to be a significantly more complicated group than T'¢(11), and
there is no particularly simple fundamental domain for T'; (11)\. However, it is
still possible to do a little combinatorial algebra and compute what I'; (11)\ should
look like: it turns out that we need to adjoin a set C; of 10 cusps to I'1 (11)\H to
obtain a compact Riemann surface which we denote X;(11):

In fact, with the proper machinery (primarily involving a fairly well developed
theory of the modular functions for I'; (11); see [5, Example 9.1.6]) it can be shown
that X;(11) still has genus 1. Methods similar to those we discussed for X(11)
can also be used to show that X;(11) can be defined as an algebraic curve X;(11)g
over : for example, in the notation of Section 4, X;(11)g can be realized as the
curve associated to the fixed field of Q(¢, E[11]) by

Hy = {( . 2 ) lae (Z/llZ)*,beZ/llZ},

considered as a subgroup of Gal(Q(¢, E[11])/Q(t)). As always, we still have the
interpretation
Xl(ll)Q((C) — Elll((C) U Cl.

However, there is an unexpected complication in this rational structure: not all
of the cusps actually lie in X7(11)p(Q). In fact, it turns out that 5 of the cusps lie
in this group, while the other 5 are defined over the maximal real subfield Q(¢;1)™*
of Q((11); this is a degree 5 extension of Q. It follows that for a general field K
containing Q, X;(11)g(K) contains either 5 or 10 cusps, depending on whether or
not K contains Q((11)". See [5, Example 9.3.5] for a discussion.

7. MODULI SPACES

The key to determining whether or not there exist elliptic curves over Q with
rational 11-torsion is an understanding of the relationship between the Q-rational
points of X;(11)g and Ell;(Q). We constructed X;(11) so that its non-cuspidal
complex points correspond to Ell; (C), but it is not at all clear if the same inter-
pretation should hold over Q.

This question is an example of a very important sort of problem in modern
algebraic geometry called a moduli problem. Let F(K) be some sort of set of
geometric objects over a field K; for example, F(K) could be
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isomorphism classes of elliptic curves E over K;
isomorphism classes of modular pairs (E,C) over K;
isomorphism classes of refined modular pairs (E, P) over K;
isomorphism classes of algebraic curves of genus 2 over K
algebraic surfaces embedded in P%;

or any other similar sort of set. The key thing is that F' should be defined for every
field K (say, of characteristic 0) and that for every inclusion of fields K < L there
should be a restriction map

F(K)— F(L)

such that for any tower of fields K — L — M, the composition of the restriction
maps F(K) — F(L) and F(L) — F(M) is just the restriction map F(K) — F(M).
(In all of the examples above the restriction map is the obvious one reinterpreting
an object defined over K as defined over L.) F is an example of a functor from the
category of fields of characteristic 0 to the category of sets.

The goal is to find a nice geometric object (say, a projective variety defined over
Q) X such that for every field K there is a bijection

X (K) +— F(K).

(It should also be compatible with the restriction maps X (L) — X (K) and F(L) —
F(K).) We have never actually been able to do this, even over C; we always had
to add a few extra points (the cusps) in order to fill in some holes. This situation
turns out to be very common; let us agree to allow a “small” exceptional set of
points as well.

If we could find such an X, we would suddenly have a powerful tool with which
to study F'. For example, if we could find such an X for Ell;, then the question of
the existence of elliptic curves with 11-torsion becomes a question about rational
points on a single variety. This philosophy of using geometric objects to study whole
families of other geometric objects is fundamental in modern algebraic geometry;
such an X is called a fine moduli space for F.

Unfortunately, fine moduli spaces do not exist for all F'. In fact, they are fairly
rare. One simple necessary condition for the existence of such a moduli space X for
F is that the restriction maps F'(K) — F(L) be injective for all inclusions K — L;
this is because the maps X (K) — X (L) are obviously injective, and F(K) — F(L)
must agree with this map. This immediately shows that F' = Ell has no fine moduli
space: indeed, take K = Q and L = Q. There are many elliptic curves over Q which
are not isomorphic over Q but which have the same j-invariant. Since they have the
same j-invariant, they become isomorphic over Q; therefore, these elliptic curves
have the same image under EIl(Q) — EII(Q), so it is not injective and no fine
moduli space can exist.

If F" does not have a fine moduli space, it still could happen that it has a coarse
moduli space. This is a projective variety X such that for every K there is a map

F(K) - X(K)

which satisfies certain technical properties, but which need not be an isomorphism.
This is what X (1) and X(11)g are for Ell and Elly. Coarse moduli spaces are also
useful, but it requires more care to obtain information about F' from them. In the
case of Ellg, the points Xo(11)g(K) turn out to correspond to modular pairs (E, C)
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defined over K, but only up to isomorphism over K. In particular, the natural map
Ellp(K) = Xo(11)p(K) — Co

is surjective but need not be injective. Even given this, the existence of rational
points on Xo(11)g does not imply the existence of elliptic curves over Q with
rational 11-torsion; for the cyclic subgroup C' to be defined over Q means only that
it is mapped to itself under the action of Gal(Q/Q), not that it is actually pointwise
fixed.

Remarkably, X;(11)g turns out to be a fine moduli space for Ell; (once we have
taken into account the cusps). That is, for every field K containing Q there is a
bijection

X1(11)p(K) «+— El (K) UC(K)
where we remember that C(K) contains either 5 or 10 cusps depending on whether
or not K contains Q(¢i1)%.

These facts are quite difficult to prove. The standard references are [4] and [6],
but they both require a great deal of algebraic geometric background. There is a
nice summary in [5, Part 2], although even it requires a fair amount of algebraic
geometry.

We give a brief indication of why X;(11)g is better behaved than our other
examples. The key fact turns out to be the following rigidity statement (see [6];
this particular section requires only familiarity with the material of [14, Chapter
3)): If (Ey, P1) and (E2, P2) are refined modular pairs defined over a field K, then
there is at most one isomorphism FE; = FE, sending P; to P;.

Given this, we can show that the restriction maps Ell; (K) — Ell; (L) are injective
for extensions K C L, so that at least that obstruction to the existence of a fine
moduli space is avoided. Unwinding the definitions, we must prove that if (Ey, P;)
and (E», P,) are modular pairs over K for which there exists an isomorphism ¢ :
E; — E5 defined over L with ¢(P;) = P, then ¢ is actually defined over K. Let o
be any element of Gal(L/K). Acting on everything by o, we obtain an isomorphism
¢? : EY — EJ sending o(P;) — o(P,); here by E? we mean the elliptic curve with
equation given by acting on an equation of E; by ¢. But since E; and E, are
defined over K, o does not effect their defining equations at all, and EY = Ej,
ES = E5. The same is true of P; and P», so we see that ¢ yields an isomorphism
of modular pairs over L (Ey, Py) = (Es, P»). By rigidity this must agree with ¢, so
p = ¢’ for all 0 € Gal(L/K). But by the main theorem of Galois theory (more or
less) this means that ¢ is defined over K, which is what we were trying to show.

8. THE ELLIPTIC CURVE X;(11)g

Given what we said in the last section, to determine whether or not there exists
a rational elliptic curve with rational 11-torsion is the same as determining whether
or not there are non-cuspidal rational points on X;(11)g. To do this, we must find
an equation for X;(11)g. This can be done in principal as we did for Xo(11)g,
although it is more complicated; in any event, one finds the equation

v +y=12" -z’
This elliptic curve has 5 torsion points:

Xl(ll)Q(Q)torS = {05 (07 0)5 (17 _1)7 (15 0)7 (05 _1)}'
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The rank of X;(11)g is, as always, more difficult to determine. By [2, p. 110], it
can be shown to have rank 0. Thus,

Xl(]-l)@(@) = {Oa (an)a (17 _1)3 (1,0), (03 _1)}

So X1(11)p has exactly five rational points. But recall that we expected five
rational cusps! Thus X;(11)g has no non-cuspidal rational points; Ell; (Q) is there-
fore empty, and we conclude that there are no elliptic curves over Q with rational
points of order 11!

9. GENERALIZATIONS

Of course, very little specific to the number 11 came into our construction of
Xo(11)g and X1(11)g. One can construct such curves Xo(N)g and X;(IN)g for any
positive integer N, corresponding to pairs of elliptic curves and cyclic subgroups of
order N and elliptic curves and points of order N, respectively. For N > 4 it turns
out that Xo(N)g is a coarse moduli space and X;(N)g is a fine moduli space.

It follows that to determine whether or not there exist elliptic curves over Q with
a point of order N, “all” we have to do is determine whether or not X;(N)g has
non-cuspidal rational points. Unfortunately, as N increases the genus of X;(N)g
increases and the methods we used for N = 11 fail to work.

It has been known for quite a while that for N = 1,2,3,4,5,6,7,8,9,10,12,
X1(N)q has genus 0 and therefore is isomorphic to Pg,. (In general, a curve of genus
0 over Q is isomorphic to IF’(b if and only if it has a rational point. In these cases, the
cusps always give automatic rational points.) It follows that there exist infinitely
many rational elliptic curves with points of order 1,2,3,4,5,6,7,8,9,10,12.

For higher N the problem is much more difficult. Before 1977, results were
known only for a few values of N, such as N = 11,13. This all changed when Barry
Mazur succeeded in fully analyzing the rational points on these curves, yielding the
following remarkable theorem.

Theorem 9.1 (Mazur [8] [9]). Let E be an elliptic curve over Q. Then the torsion
subgroup of E(Q) is one of the following 15 groups:

Z/NZ (N=1,2,3,4,5,6,7,8,9,10,12);
Z)2Z x Z/NZ (N=1,2,3,4).

More recent work on the points of X;(N) over larger number fields has yielded
the following theorem.

Theorem 9.2 (Merel [10]). Let K be a number field of degree d. Then there is an
integer M, depending only on d (and not on K itself) such that every elliptic curve
over K has torsion subgroup of order at most M.
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