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1. Preparation

I will assume that the students will have some familiarity with the following (by
now ancient) topics, though not necessarily with proofs:

(1) Class field theory, especially the formalism using the idele class groups, as
summarized for example in [RaV], chapter 6;

(2) Hecke characters of type A0 ([We]), and the analytic properties of their L-
functions -as in section 7.4 of [RaV];

(3) Classical modular forms on the upper half plane, Hecke operators and the
associated Galois representations; a good, relaxed survey is in [Ri]; and

(4) Automorphic forms on GL(2) from the representation theoretic point of view
and the connection with (3), as in chapters 2-4 of [Ge], or selected portions of
chapters 2-3 of [Bu]; [De] is another beautiful reference, but I am distressed
by seeing the discrete group act there on the right (I guess I’m a closet leftist).

I would also assume that people have seen the rudiments of group cohomology,
elliptic curves, cusps, · · · . If all of this is mother’s milk to someone, he/she could
thumb through [Ti] for entertainment.

2. An outline of the course

The following should be taken as a sort of a rough set of goals for the course. In
particular I am not sure if it will be possible to cover all the material, or even most
of it. My main interest is to introduce the students to an active and interesting
area without drowning them. (One of my favourite films is Drowning by numbers
by Peter Greenaway.)

The main objects here will be analogs, for CM fields K of degree 2n, of the
classical modular forms of weight k ≥ 2. (Recall that a CM field is a totally
imaginary quadratic extension K of a totally real number field F .) These forms
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over K are not holomorphic, but they contribute to the cohomology of Y0(A) :=
Γ0(A)\Hn

3 in degrees n and 2n, where H3 is the hyperbolic 3-space and Γ0(A) is
a congruence subgroup of SL(2, OK) associated to an an ideal A. There are also
Hecke operators here and since they preserve the Q-structure of the cohomology,
one knows the algebraicity of the eigenvalues aP of any cuspidal Hecke eigenform
f . The cusp forms f in fact lie in a subspace called the cuspidal cohomology and
a supplement is spanned by Eisenstein series. We will discuss briefly the work of
Harder ([Ha]).

It is a difficult problem to know how many cusp forms there are of a given weight
k ≥ 2 over K. We will try to understand this. Over totally real number fields
one can use the Riemann-Roch theorem (geometry) or the Selberg trace formula
(analysis), but neither method applies here, the former because the space Y0(A)
has no complex structure and the latter because the archimedean component π∞ of
the automorphic representation π associated to a Hecke eigenform f is not isolated.
(The non-isolation of the infinity type is also the reason why it is hard to construct
Maass forms on the upper half plane; perhaps Sarnak will address this issue in his
lectures.) The simplest way to get examples is to use algebraic Hecke characters of
quadratic extensions M/K with the right infinity type. One can also base change
Hilbert modular forms from the totally real subfield F to K, and then one can twist
them by finite order characters to get new ones. So the problem becomes one of
finding forms f not defined by Grossencharacters of quadratic extensions such that
no abelian twist of f is a base change from F . Poincare series and modular symbols
provide a few examples; see [EGM], [Cr] for the case when [K : Q] = 2.

The modularity conjecture over K will say, in its simplest and perhaps the most
important form, that any elliptic curve E over K is associated to a modular form
f of weight 2, trivial character and Q-coefficients. This can be verified for E of
CM type, with f being a cusp form only when the complex multiplications are not
defined over K. For K = Q[

√−3], there is an explicit non-CM example in [Ta1],
namely the curve E given by y2 + xy = x3 + (3 +

√−3)x2/2 + (1 +
√−3)x/2,

which does not come by base change from Q. Of late I have been collaborating
with Farshid Hajir, looking for such examples over quartic CM fields, and if we
make sufficient progress before March 10, 2001, I will discuss such an example in
the course. One important reason to find such an example is to deduce, when a
successful matching is achieved, the Ramanujan bound for the coefficients of the
associated form f , about which precious little is known outside the totally real
situation. In any case, the existence of non-CM elliptic curves over K implies, at
least conjecturally, the existence of cusp forms of weight 2 over K.

In the converse, so called easy, direction, it is conjectured that to every Hecke
eigenform f over K with character ω one should be able to associate a 2-dimensional
Q`-representation ρ` = ρ`(f) of GK := Gal(Q/K) such that (for almost all primes
P ) the Hecke eigenvalue aP of f equals the trace of the Frobenius FrP under ρ`,
with det(ρ`) = ωχk−1

` , where χ` is the cyclotomic character. (Such a result is
well known over totally real fields, but unlike in that case, one cannot expect that
forms of weight 2, trivial character and Q-coefficients give rise to elliptic curves
E/K; this is because automorphic forms are not sensitive to coefficients.) The only
published result so far in the non-totally real case is the theorem of R.L. Taylor
([Ta1]) for [K : Q] = 2, giving the existence, for k even, of ρ` under mild (removable)
hypotheses, but it yields the equality aP = tr(ρ`(FrP )) only for P in a set of primes
of density 1. This work depends on his earlier joint work with M. Harris and D.
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Soudry ([HST]) giving a holomorphic lifting from GL(2)/K to GSp(4)/Q whenever
an appropriate central L-value is non-zero.

In the last couple of lectures, time permitting, I will outline an ongoing program
to associate certain Galois representations to f over an arbitrary CM field K. First
I will explain the principle of functoriality, which tells one when to expect liftings,
and what sorts, between reductive groups, but I will do this by stressing mainly
the concrete cases of GL(2), GL(4), GSp(4) and U(4). I will then indicate why it is
difficult to blindly extend Taylor’s work to the general CM K. In fact the method
I will propose will utilize a tensor product construction ([Ra1,2]) and base change
([C`1]), followed by a lifting to a holomorphic form g, say, on a suitable unitary
group in 4 variables over F . Such a g will be semi-regular, the analog of a classical
weight 1 form on the upper half plane. By multiplying by the `n-th power of a Hasse
invariant form h, which is pulled back from large symplectic group (cf. section 3
of [BRa]), one constructs a family φn of forms of regular type, i.e., contributing to
the cohomology of the associated Shimura variety, such that g ≡ φn mod(`n+1).
(There is a mistake in [BRa], but it does not affect this section.) Admitting some
ramification conditions on f , one can then appeal to the results of Clozel ([C`2])
and Kottwitz ([Ko]), and construct certain 4-dimensional representations τ`,n of GF .
(Needless to say, the people who understand Clozel’s course well will be happy when
we get to this last part of our course. The earlier parts will be a lot easier to follow,
however.) After that one needs to appeal to the theory of pseudo-representations
of Wiles ([W]), as generalized by Taylor ([Ta2]), to piece together a representation
associated to f - an instance of vertical `-congruences in the terminology of [Ti].

Why does one have to go through so much trouble? The answer is simple.
We need to use functoriality and move to a different group which has a Shimura
variety so that one can use arithmetical algebraic geometry and/or congruences to
produce `-adic representations. The varieties attached to GL(2)/F or U(4)/F for
F totally real, and to GSp(4)/Q, are all nice because they are of pe` type, i.e., they
parametrize abelian varieties with polarization, endomorphisms and `evel structure,
but the ones associated to GSp(4)/F are not so nice for F 6= Q; the zeta functions,
in fact even the congruence relations, are not understood for them. Admittedly this
area is somewhat forbidding to get into, not because it is any harder than any other
subject, but because it requires one to be comfortable with a variety of techniques.
On the plus side, once you are in you will note that there is a host of unsolved
problems.

3. The student project

As mentioned above, there is a construction in [Ta1] of a 2-dimensional Galois
representation ρ` associated to a form π of weight 2k over an imaginary quadratic
field K under a hypothesis on a non-vanishing L-value result, which has since
been established ([FH]). But this article only proves that the Hecke eigenvalue aP

of π equals the trace of ρ`(FrP ) at every prime P in a set of density 1. The
reason for this is that he uses congruence relations for the variety Sh associated to
GSp(4)/Q. (Sh parametrizes polarized abelian surfaces with level structure.) Now
there is a preprint [Weiss] of Weissauer giving the construction of 4-dimensional
representations σ` of Gal(Q/Q) associated to Siegel modular forms ϕ of weight
≥ 3. To be precise, there is a degree 4 polynomial Pp(T ) at an unramified prime
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p associated to a Hecke eigenform ϕ (see section 2 of [BRa] for example), defining
its L-function, and Weissauer’s assertion is that the characteristic polynomial of
σ`(Frp) equals Pp(T ). (You can just ADMIT this for the project.) There is another
proof in the work of Laumon ([Lau]), though only for the case of constant coefficients
(weight 3). The proof should be simpler for higher weights, but unfortunately this
has not been done. The project will require the knowledge of Galois representations
attached to Siegel modular forms of all weights ≥ 3, even if one begins with an f
of weight 2 over K.

The project I propose is to substitute this result of Weissauer for (the weaker
information on Galois representations coming from) congruence relations which
Taylor uses, and obtain a ρ` which is correct at all the primes P which are unramified
and prime to `. This can be done within a week if one becomes familiar with the
results of [Ta1] and an outline of the method. Analytically minded students could
explain [FH] and indicate how and why it enters the picture. One could treat the
results of [Weiss] (Theorem I on page 1) and [HST] as well as many of the arguments
of [Ta1] as a big black box and try to get the desired result. Of course the idea is
that one will learn some interesting stuff along the way. It will also be very useful
to have this result available with complete reasoning for the general public.

I would like to meet with the few students doing the project with me on the first
day of the winter meeting for half an hour or so, during which time I will give a
sketch of how I think the verification and the writing process should go.

4. Selected References

These are given for general culture and for completeness. They are wide ranging
and cover much more ground than we would need, and the students are NOT
expected to know them for the lectures. The only exception is the stuff mentioned
in the Preparation section and the references suggested in the project for those
students doing it with me.
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