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The purpose of these notes is to describe the notion of an Euler system, a col-
lection of compatible cohomology classes arising from a tower of fields that can be
used to bound the size of Selmer groups. There are applications to the study of
the ideal class group, Iwasawa’s main conjecture, Mordell-Weil group of an ellip-
tic curve, X (the Safarevich-Tate group), Birch-Swinnerton-Dyer conjecture, and
a study of the p-adic main conjecture for elliptic curves. For a reference, consult
[R 1], the bibliography there, and also [R 2].

Our group will be giving four hour lectures, as the schedule indicates, as follows:

1. Introduction to Euler Systems and Kolyvagin Systems. (B.M.)
2. L-functions and applications of Euler systems to ideal class groups (ascend-

ing cyclotomic towers over Q). (T.W.)
3. Student presentation: The “Heegner point” Euler System and applications to

the Selmer groups of elliptic curves (ascending anti-cyclotomic towers over quadratic
imaginary fields).

4. Student presentation: “Kato’s Euler System” and applications to the Selmer
groups of elliptic curves (ascending cyclotomic towers over Q).

1. Anchor Problem

Fix E an elliptic curve over Q. So, modular. Let K be a number field. We wish
to study the “basic arithmetic” of E over K. That is, we want to understand the
structure of these objects:

• The Mordell-Weil group E(K) of K-rational points on E.
• The Shafarevich-Tate group X(K, E). Via multiplication by n on the elliptic

curve, we have an exact sequence

0 → E(K)[n] → E(K) n−→ E(K) → 0

which after taking Galois invariants we obtain

0 → E(K)/nE(K) → H1(GK , E(K)[n]) → H1(GK , E)[n] → 0

and hence by global-to-local maps we may look at

X(K,E) = ker(H1(GK , E) → ∏
vH1(GKv , E)).

The elements of this group are isomorphism classes of locally trivial E-curves,
i.e. pairs (C, i) where C is a proper smooth curve defined over K and i is an K-
isomorphism between the Jacobian of C and E [S, §10.4] (called homogeneous
spaces).
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Now experience has led us to realize

1. (that cohomological methods apply:) We can use cohomological methods if
we study both E(K) and X(K, E) at the same time. That is, for each positive
integer n we have the Classical Selmer group S(K,E;Z/nZ) which fits into an exact
sequence

0 → E(K)/n · E(K) → S(K, E;Z/nZ) →X(K,E)[n] → 0,

and the Selmer group is directly expressible in terms of one-dimensional Galois
cohomology over K. Euler systems can be used to investigate E(K) and X(K, E)
suimultaneously, by bounding the size of the Selmer group. We will be defining a
more general kind of Selmer group in a moment.

2. (that varying the ground field sometimes helps:) There is an advantage
to studying Mordell-Weil groups, Shafarevich-Tate groups, and Selmer groups for
a large class L of number fields which are abelian Galois extensions of a “base”
number field K (“ all at once”) rather than for just a single number field K. Here
are some standard choices of L:
• (p-cyclotomic extensions of the rational number field.) When K = Q we may

take L to be the class of all abelian extensions of Q; or we may fix a prime number
p and take the class of all p-abelian extensions of Q, restricting to the p-primary
components of the Selmer groups; or (as in classical Iwasawa theory) we might take
L to be the class of all p-abelian extensions of Q unramified outside p. Much work
has been done in studying the asymptotics of Mordell-Weil groups, Shafarevich-
Tate groups, and Selmer groups ascending this tower . [See Appendix below for
the case ` 6= p].

• (anti-cyclotomic extensions of the quadratic imaginary fields.) When K is a
quadratic imaginary field and take L to be the class of (all, or just those with
ramification restricted to the primes dividing p) abelian extensions of K which
are Galois extensions of Q and such that the conjugation action of the nontrivial
element of Gal(K/Q) on their Galois group is via multiplication by −1.

3. ( the principle that you can’t get something for nothing:) There is a powerful
method of bounding (from above) the “size” of the Selmer group attached to a
given representation over K. This method requires constructing certain (“Euler”)
systems of elements in the Selmer groups attached to the dual representation over
each of the number fields in the given “large” class L. The “Heegner point Eu-
ler system” in the anti-cyclotomic context, and the “Kato’s Euler system” in the
cyclotomic context.

Here is an amusing instance of this principle: given what has been proved to
date, one knows that any smooth proper curve defined over Q of genus one and
conductor 37 has a rational point over Q. Here we can allow our curve to be given
to us as a curve in any dimensional projective space, and as cut out by any number
of equations; or perhaps, it may be given abstractly. We then can ask: does the
proof that it has a Q-rational point actually find one such point on the curve for
us? The answer is yes, but only if we have either explicitly or implicitly previously
found some nontrivial point on its jacobian (if its jacobian is the elliptic curve over
Q with positive Mordell-Weil rank).
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4. ( that L-functions “control” Euler systems which “control” Selmer groups:)
Here is where the real power lies. Cohomological methods are pretty good at
ferreting out information modulo a single number n, or equivalently modulo powers
of prime numbers p but only for finitely many prime numbers p “at a time”. But
a single special value of an L-function can, at times, by its connection to an Euler
System, bound from above the size of the relevant p-Selmer groups for all (or at
least for all but a finite number of) prime numbers p.

The following flow-chart summarizes the construction that follows:

Arithmetic geometry

²²
Euler systems
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L-functions

((QQQQQQQQQQQQQ
Kolyvagin systems
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Selmer group

We begin with some amount of data arising from algebraic geometry, for ex-
ample, cyclotomic units, Heegner points, or Kato-Beilinson elements arising from
K-theory. From these, we construct the Euler system, compatible collections of co-
homology classes. From the Euler system we obtain information about L-functions
and Kolyvagin systems which give us bounds on the Selmer group.

2. Selmer groups. How playing off local duality against global
duality gives a mechanism for bounding Selmer groups.

If K is a field, K̄/K denotes a choice of separable algebraic closure and GK :=
Gal(K̄/K) its Galois group. Let T be a finite abelian group with continuous GK ac-
tion, and H∗(K,T ) := H∗(GK , T ) cohomology computed with continuous cochains.
Let T ∗ := Hom(T, Gm) = Hom(T, µ) be the Cartier dual of T , and

T × T ∗ → µ

the duality pairing. This pairing induces a bilinear pairing (via cup-product)

H1(K, T )×H1(K,T ∗) → H2(K, µ)

which looks quite different when we take K to be a global field, or a local field.
The mechanism we are about to describe will play one against the other (the global
against the local).

Suppose, then, that K is a number field, and Kv is some completion of K (non-
archimedean or archimedean). We have the global-to-local restriction mappings

H1(K,T ) −→
∏
v

H1(Kv, T ),
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(denoting by
∏

v hv the image of the global cohomology class h) and

H1(K,T ∗) −→
∏
v

H1(Kv, T ∗).

Let us consider how duality enters the story, beginning with the local situation.
Let v be a place of K. We have that the cup pairing

H1(Kv, T )×H1(Kv, T ∗) → H2(Kv, µ) ⊂ Q/Z

is a perfect pairing. Hence the cohomology class hv may be identified with the
functional “cupping with hv”, hv : H1(Kv, T ∗) → H2(K, µ).

In contrast, Global Class Field Theory tells us that if we compose the global
(cup-product) pairing

H1(K, T )×H1(K,T ∗) → H2(K, µ)

with the homomorphism H2(K, µ) → Q/Z which is given by summing local invari-
ants, we get a beautiful bilinear pairing

H1(K, T )×H1(K, T ∗) → Q/Z

which has the virtue of vanishing identically.

How can we make this disparity work for us?

We wish to impose local conditions on the restrictions of global cohomology
classes to Kv for places v. To prepare for this let us simply call a local condition
F at v (for T ) any choice of subgroup, which we denote

H1
F (Kv, T ) ⊂ H1(Kv, T ).

By the singular cohomology for such a local condition F , which we will just
denote H1

S(Kv, T ), we mean the quotient group

H1
S(Kv, T ) := H1(Kv, T )/H1

F (Kv, T ).

We get then an exact sequence,

0 −→ H1
F (Kv, T ) −→ H1(Kv, T ) −→ H1

S(Kv, T ) −→ 0. (1)

Given such a local condition at v, Tate Duality allows us to stipulate a “dual”
local condition at v (for T ∗), namely, H1

F∗(Kv, T ∗) ⊂ H1(Kv, T ∗) is defined to be
the annihilator subgroup of H1

F (Kv, T ) under the Tate pairing, and the dualization
of the above exact sequence yields

0 −→ H1
F∗(Kv, T ∗) −→ H1(Kv, T ∗) −→ H1

S∗(Kv, T ∗) −→ 0. (2)

The natural choice. If Kv is nonarchimedean let Ov be the ring of integers in
Kv, Fv its residue field, and Kunr

v ⊂ K̄v the maximal unramified subfield of K̄v.
Let Iv denote the inertia group Gal(K̄v/Kunr

v ), and GFv := Gal(Kunr
v /Kv). These

groups fit into the exact sequence

{1} −→ Iv −→ GKv −→ GFv −→ {1}. (3)
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Note that if F̄v is an algebraic closure of Fv, then GFv
∼= Gal(F̄v/Fv) ∼= Ẑ (the

latter isomorphism sending the Frobenius automorphism in Gal(F̄v/Fv), x 7→ x|Fv|,
to 1 ∈ Ẑ).

The vanishing of H2(GFv , T Iv ) yields the canonical exact sequence

0 −→ H1(GFv
, T Iv ) −→ H1(Kv, T ) −→ H1(Iv, T )GFv −→ 0. (4)

Now the above exact sequence presents a “natural” choice of local condition
for any nonarchimedean v; namely we could take H1

F (Kv, T ) to be equal to
H1(Fv, T Iv ) ⊂ H1(Kv, T ). In this case, H1

S(Kv, T ) = H1(Iv, T )GFv and If T
is unramified for at v the“natural choices” for T and for T ∗ are dual under Poitou-
Tate duality. In particular, we may identify elements of H1

S(Kv, T ) with linear
functionals on H1

F∗(Kv, T ∗).

Let us return to the global situation and say that a Selmer structure F on a
(finite) GK-module T is a local condition Fv at all v which is the “natural choice”
for almost all v. The dual of Selmer structure for T is a Selmer structure for T ∗.
Note that if we are given a Selmer structure for T the global-to-local mapping
H1(K, T ) → H1

Sv
(Kv, T ) vanishes for almost all v, and therefore we have a well-

defined global-to-local homomorphism

H1(K,T ) →
⊕

v

H1
S(Kv, T ).

By the Selmer group SelF (K,T ) associated to (T,F) let us mean the kernel
of the above homomorphism. So we have an exact sequence:

0 −→ SelF (K,T ) −→ H1(K,T ) −→
⊕

v

H1
S(Kv, T ). (5)

Dually,

0 −→ SelF∗(K,T ∗) −→ H1(K,T ∗) −→
⊕

v

H1
S∗(Kv, T ∗). (6)

We can now say what the basic mechanism is which allows global cohomology
to bound Selmer groups: given any global cohomology class h ∈ H1(K, T ) consider
its image, ⊕

v

hSv ∈
⊕

v

H1
Sv

(Kv, T ),

and note that since the global duality mapping as displayed above is zero, we get
a “semi-local” relation satisfied by any class σ ∈ SelF (K, T ). namely,

∑
v

hSv (σv) = 0.

Given enough of these relations, we can completely describe SelF (K,T ) in good
cases.

3. Passing from Selmer structure to Selmer structure; Global
Duality

The Global Duality Theorem allows us to understand quite precisely how changes
in the “stringency” of a Selmer structure effects change in cohomology. (“Adjust-
ing” Selmer structures is one of the arts in Kolyvagin’s theory.) Suppose, then, that
T is a finite GK-module endowed with two Selmer structures F1, and F2. Suppose
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further that F1 ≤ F2 in the evident sense that the local conditions for F1 are more
“stringent” than those for F2.

We have exact sequences

0 −→ H1
F1

(Q, T ) −→ H1
F2

(Q, T ) −→ ⊕`H
1
F2

(Q`, T )/H1
F1

(Q`, T ),

0 −→ H1
F∗2 (Q, T ∗) −→ H1

F∗1 (Q, T ∗) −→ ⊕`H
1
F∗1 (Q`, T

∗)/H1
F∗2 (Q`, T

∗)

where the sums are over primes ` such that H1
F2

(Q`, T ) 6= H1
F1

(Q`, T ), and (reading
from left to right) the last mappings of each sequence are the natural localization
maps and their images are orthogonal complements of each other with respect to
the sum of the local Tate pairings. This latter statement is (Poitou-Tate) global
duality; see for example [T] Theorem 3.1 or [Mi] Theorem I.4.10 (see also [R 1]
Theorem 1.7.3).

4. Euler Systems

We recall here the notion of Euler systems [R 1] (with some minor modifications).
See also the forthcoming article[M-R]. Let R be a complete noetherian local ring
with finite residue field of characteristic p. Let K be a number field, K̄/K an
algebraic closure, and K ′ be an “intermediate field”; i.e., a field K ′ such that
K ⊂ K ′ ⊂ K̄, so GK′ ⊂ GK is the subgroup which fixes the elements of K ′; if
K ′/K is Galois, let G(K ′/K) ∼= GK/GK′ be its Galois group. If M is a compact
R-module equipped with continuous GK-action let H(K ′,M) := H1

F ′(GK′ ,M),
i.e., H(K ′, M) is the R-module of one-dimensional Galois cohomology of M over
K ′, computed with continuous cochains, and with some chosen Selmer structure
F . From now on our Selmer structure will be the natural one outside p and no
condition for primes dividing p. If K ′/K is Galois, then H(K ′,M) is naturally an
R[[G(K ′/K)]]-module. Note that besides the covariant functoriality of H(K ′, M)
in the pair (K ′,M) we have a contravariant functoriality given by the corestriction,
or norm, mappings νK′′/K′ : H(K ′′, M) → H(K ′,M) for finite (intermediate)
field extensions K ′′/K ′. More generally, we might think of allowing H(K ′,M) in
the discussion below to stand for any “decent” functor from pairs (K ′,M) to the
category of R-modules which admits “norms” (i.e., corestrictions).

Let T be a free R-module of finite rank equipped with a continuous R-linear
GK-action and which is unramified outside a finite set of primes of K. Let T ∗ :=
Homcont(T,Zp(1)) denote the dual GK-module. For each prime q of K fix φ−1

q ∈
GK , a choice of Frobenius-inverse element at q. If q is a prime of K unramified in
the action of GK on T ∗, form:

Pq(X) := det(1−Xφ−1
q |T ∗) ∈ R[X],

the characteristic polynomial of φ−1
q acting on the dual module, T ∗ defined above.

This is well-defined since q is unramified in the action of GK on T ∗.
Fix N , a set of primes containing all ramified primes of T and the primes of K

lying above p.
If K ′′/K ′ is an intermediate Galois extension, let Σ(K ′′/K ′;N ) denote the (fi-

nite) set of primes of K not in N which are unramified in the extension K ′/K and
ramified in the extension K ′′/K. Define:
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P (K ′′/K ′;N ) :=
∏

q∈Σ(K′′/K′;N )

Pq(φ−1
q ) ∈ R[GK ],

noting that this element in the group ring depends upon the choices of Frobenius
elements, and on a choice of ordering of the factors in this product. However, since
the action of R[GK ] on H(K ′, T ) factors through the quotient ring R[[G(K ′/K)]],
and the primes q contributing to the above product are all unramified in K ′/K, we
see that the natural action of P (K ′′/K ′;N ) on H(K ′, T ) provides us with a unique
R-endomorphism

P (K ′′/K ′;N ) : H(K ′, T ) → H(K ′, T )
independent of choice of Frobenius elements if K ′/K is an abelian Galois extension.
Now let L/K be any “intermediate” abelian Galois extension.

Definition 4.1. By the N -Euler (projective) limit of the system

{H(K ′, T )}K⊂K′⊂L

is an R[[G(L/K)]]-module of systems of elements {c′K ∈ H(K ′, T )}K⊂K′⊂L, with
the following compatibility relation for finite intermediate extensions K ′ ⊂ K ′′:

νK′′/K′ · cK′′ = P (K ′′/K ′;N ) · c′K .

Provisional notation for this R[[G(L/K)]]-module could be

E.S.(L/K, T ) := EulerLimK′→LH(K ′, T )

when the choice of N is understood. We will refer to this as the R[[G(L/K)]]-
module of Euler systems for (L/K, T ;N ) noting, however, that the term Euler
systems is reserved in [R 1] (Defn. 2.1.1) for the more restricted situation where
L contains all the ray class fields over K relative to primes not dividing N and it
contains a Zp-extension in which no (finite) prime of K splits completely.

Comments. If L/K is unramified outside N , then the “Euler limit” is just the
standard inverse limit compiled via norms. In particular, this is the case if L/K is a
Zp extension. A nontrivial element in E.S.(L/K, T ) corresponds to a large number
of cohomology classes all compatible in this Euler limit way, something of a hyper-
universal norm! We will restrict attention, below, to p-abelian extensions L/K.

In our present case, let Γ denote the quotient of the compact p-abelian group
G(L/K) by its torsion subgroup. Let K∞/K be the fixed subextension of L/K un-
der the torsion subgroup of G(L/K). Then we have a natural surjection G(L/K) →
G(K∞/K). Putting Γ := G(K∞/K) we have G(K∞/K) ∼= Zd

ν for some non-
negative integer ν (which we can call the Zp-rank of L/K). Put Λ := R[[Γ]].

Let us denote:

H∞(K ′, T ) := proj.lim.K′→K∞H(K ′, T ).

We have the natural homomorphism of Λ-modules,

E.S.(L/K, T )⊗R[[G(L/K)]] Λ
γ−→ E.S.(K∞/K, T ) = H∞(K ′, T ).

Example. Let R, T be as above with K = Q and take L/K to be the maximal
p-abelian extension of Q. Let N denote the set containing the ramified primes for
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T and the prime number p. Let Q(∞)/Q be the (cyclotomic) Zp-extension and
Q(n) ⊂ Q(∞) the subfield of degree pn over Q. It follows from the “weak Leopoldt
Conjecture” that

rankΛH∞(Q, T ) = d−,

where d− is the dimension of the minus eigenspace of the complex conjugation
involution acting on T . Also very reasonable hypotheses guarantee that H∞(Q, T )
has no Λ-torsion.

Thus we are led to the following questions:
• Is the kernel ker γ a Λ-torsion module?
• What is the Λ-rank (the vector space dimension after tensoring with the field

of fractions Zp((Gal(L/K)))) of SF (Q∞/Q,T)? Is it equal to the minus
eigenspace of the complex conjugation acting on T? (This conjecture is tied
to the weak Leopoldt conjecture.)

• Is it true that cokernel cokerγ and the dual Selmer group SF∗(Q∞/Q,T∗)
are both Λ-torsion and their semisimplifications as Λ-modules isomorphic up
to finite modules?

• What are the connections with p-adic L-functions? Is there a possible modifi-
cation of the p-adic L-function at p such that quotient of Λ by that L-function
has a similar statement with kernels and cokernels?

For discussion of this, see [M-R], currently in preparation. Kato has given several
examples where the second statement is true, and we know at least that the Selmer
of the dual is bounded by the cokernel of γ, due to the role of the p-adic L-function
(which bounds both). Even more recent results begin to produce a similar theory
using Heegner points over quadratic imaginary fields where instead of cyclotomic
tower one uses an anticyclotomic tower.

5. General Bounds.

Here are two “hypotheses” and it would be very good to establish them quite
generally.

Hypothesis A. The kernel of

E.S.(L/Q, T )⊗R[[G(L/K)]] Λ → H∞(Q, T )

is a Λ-torsion module.

Hypothesis B. If d− = 1 the characteristic ideal of the cokernel of

E.S.(L/Q, T )⊗R[[G(L/K)]] Λ → H∞(Q, T )

is equal to the characteristic ideal of the Selmer group of the (Cartier) dual Galois
representation T ∗ with dual Selmer structure K′∗.

As for B. one has that under very general hypotheses the characteristic ideal of
the Selmer group of the (Cartier) dual Galois representation T ∗ with dual Selmer
structure K′∗ divides the characteristic ideal of the cokernel of

E.S.(L/Q, T )⊗R[[G(L/K)]] Λ → H∞(Q, T ).

But we can establish the full strength of B at present only in very few instances.
(For example, when T = Zp(1) ⊗ χ where χ an even nontrivial character of finite
order. Query: Can one show hypothesis A in this case?)
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6. Bounds governed by L-functions

The example for which we have the most complete information, and which might
serve as a template for what we might try to get in other cases is given by taking
K = Q and T = Zp(1) ⊗ χ where χ an even nontrivial character of finite order.
Modify the Selmer structure on T by putting the natural local condition at p; and
form

H∞,S(Qp, T ) := proj.Limn→∞HS(Qp(n), T ).

Either of the two standard proofs of the classical main conjecture establishes the
fact that the Λ module E.S.(L/Q, T )⊗R[[G(L/K)]] Λ is generated by the cyclotomic
Euler system and the characteristic ideal of the cokernel

E.S.(L/Q, T )⊗R[[G(L/K)]] Λ −→ H∞,S(Q, T ),

is generated by the Leopoldt-Kubota L-function Lp(χ, s) viewed as element of Λ,
which is the characteristic ideal of the Iwasawa module constructed from of p-
primary components of ideal class groups of layers of the p-cyclotomic tower.

In the case of elliptic curves E defined over Q, working with the Heegner Euler
System over an anti-cyclotomic tower over a quadratic imaginary field, or using
Kato’s Euler System over the cyclotomic tower over Q one presently has divisibility
results (i.e., the characteristic ideal of the appropriate Selmer group divides the
ideal generated by corresponding p-adic L function (cf. Chapter 3 of [R 1]), and
this alone is enough to establish striking information about Mordell-Weil and X,
as the later lectures will explain, but in both cases we still await a general “main
conjecture.”

Appendix. The `-asymptotics of X as one ascends a p-cyclotomic tower.
The p-adic “main conjecture” for elliptic curves packages much that one might want
to understand about p-asymptotics of X as one ascends a p-cyclotomic tower, but I
have never heard, or read, any mention of the perfectly natural companion question
alluded to in the title of this section, when ` 6= p. The natural guess here, is to
follow the lead of Larry Washington’s 1978 Inventiones article where he proves that
if ` 6= p, k is any abelian number field, kn/k the n-th layer of the p-cyclotomic
Zp-extension of k, (n = 1, 2, . . . ), and `en the exact power of ` dividing the class
number of kn. then en is constant for n sufficiently large. If we allow ourselves to
be influenced by that, and by the “standard analogy” between ideal class groups
and X, a first guess might be that if ` 6= p, and E is an elliptic curve over k
such that the Gk-representation on E[`] is absolutely irreducible, then the order of
the `-primary component of X(E/kn) is constant for n sufficiently large. It would
be even more interesting if there were counter-examples to this first guess. Using
modular symbols, how hard would it be to get data on this? I also wonder whether
people have considered the analogous questions for arithmetic K-groups.



10 BARRY MAZUR, HARVARD UNIVERSITY

References

[K] V. A. Kolyvagin, Euler Systems, Prog. Math. 87, Birkhäuser, Boston (1990), 435–483.
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