
AN INTRODUCTORY LECTURE ON EULER SYSTEMS

BARRY MAZUR

(these are just some unedited notes I wrote for myself to prepare for
my lecture at the Arizona Winter School, 03/02/01)

Preview

Our group will be giving four hour lectures, as the schedule indicates, as follows:

1. Introduction to Euler Systems and Kolyvagin Systems. (B.M.)
2. L-functions and applications of Euler systems to ideal class groups (ascend-

ing cyclotomic towers over Q). (T.W.)
3. Student presentation: The “Heegner point” Euler System and applications to

the Selmer groups of elliptic curves (ascending anti-cyclotomic towers over quadratic
imaginary fields).

4. Student presentation: “Kato’s Euler System” and applications to the Selmer
groups of elliptic curves (ascending cyclotomic towers over Q).

Here is an “anchor problem” towards which much of the work we are to describe
is directed. Fix E an elliptic curve over Q. So, modular. Let K be a number
field. We wish to study the “basic arithmetic” of E over K. That is, we want to
understand the structure of these objects:

• The Mordell-Weil group E(K) of K-rational points on E, and
• The Shafarevich-Tate group Sha(K, E) of isomorphism classes of locally trivial

E-curves over K.

[ By an E-curve over K we mean a pair (C, ι) where C is a proper smooth
curve defined over K and ι is an isomorphism between the jacobian of C and E,
the isomorphism being over K.]

Now experience has led us to realize

1. (that cohomological methods apply:) We can use cohomological methods if
we study both E(K) and Sha(K,E) at the same time. That is, for each positive
integer n we have the Classical Selmer group S(K,E;Z/nZ) which fits into an exact
sequence

0 → E(K)/n · E(K) → S(K, E;Z/nZ) → Sha(K, E)[n] → 0,

and the Selmer group is directly expressible in terms of one-dimensional Galois
cohomology over K. We will be defining a more general kind of Selmer group in a
moment.
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2. (that varying the groundfield sometimes helps:) There is an advantage to
studying Mordell-Weil groups, Shafarevich-Tate groups, and Selmer groups for a
large class L of number fields which are abelian Galois extensions of a “base”
number field K (“ all at once”) rather than for just a single number field K. Here
are some standard choices of L:

• (p-cyclotomic extensions of the rational number field.) When K = Q we may
take L to be the class of all abelian extensions of Q; or we may fix a prime number
p and take the class of all p-abelian extensions of Q, restricting to the p-primary
components of the Selmer groups; or (as in classical Iwasawa theory) we might take
L to be the class of all p-abelian extensions of Q unramified outside p. Much work
has been done in studying the asymptotics of Mordell-Weil groups, Shafarevich-
Tate groups, and Selmer groups ascending this tower . [But: On preparing these
notes, I did a double-take when I realized that what I have just written is not really
true! See Appendix A below. ]

• (anti-cyclotomic extensions of the quadratic imaginary fields.) When K is a
quadratic imaginary field and take L to be the class of (all, or just those with
ramification restricted to the primes dividing p) abelian extensions of K which
are Galois extensions of Q and such that the conjugation action of the nontrivial
element of Gal(K/Q) on their Galois group is via multiplication by −1.

3. ( the principle that you can’t get something for nothing:) There is a powerful
method of bounding (from above) the “size” of the Selmer group attached to a
given representation over K. This method requires constructing certain (“Euler”)
systems of elements in the Selmer groups attached to the dual representation over
each of the number fields in the given “large” class L. The “Heegner” Euler system
in the anti-cyclotomic context, and the “Kato” Euler system in the cyclotomic
context.

4. ( that L-functions “control” Euler systems which “control” Selmer groups:)
Tom Weston will be explaining this in his lecture, but let me point out that here
is where the real power lies. Cohomological methods are pretty good at ferreting
out information modulo a single number n, or equivalently modulo powers of prime
numbers p but only for finitely many prime numbers p “at a time”. But a single
special value of an L-function can, at times, by its connection to an Euler System,
bound from above the size of the relevant p-Selmer groups for all (or at least for all
but a finite number of) prime numbers p.

Put the flow-chart here.
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menu

Here are the topics to be discussed today. Much of it is already “traditional”
and in the literature. See especially Karl Rubin’s book:

[R] Euler Systems, Annals of Mathematics Studies, Princeton University Press
(2000)

To the extent that I will get to any “new” material today, it represents joint
work with Karl Rubin.

1. Selmer groups. How playing off local duality against global duality gives a
mechanism for bounding Selmer groups.

2. Euler Limits.
3. General bounds.
4. Bounds governed by L-functions
5. The combinatorial rigidity of Kolyvagin systems (see my article with Karl

Rubin Kolyvagin systems URL: )

1. Selmer groups. How playing off local duality against global duality
gives a mechanism for bounding Selmer groups.

If K is a field, K̄/K denotes a choice of separable algebraic closure and GK :=
Gal(K̄/K) its Galois group. Let T be a finite abelian group with continuous GK ac-
tion, and H∗(K,T ) := H∗(GK , T ) cohomology computed with continuous cochains.
Let T ∗ := Hom(T, Gm) = Hom(T, µ) be the Cartier dual of T , and

T × T ∗ → µ

the duality pairing. This pairing induces a bilinear pairing (via cup-product)

H1(K, T )×H1(K,T ∗) → H2(K, µ)

which looks quite different when we take K to be a global field, or a local field.
The mechanism we are about to describe will play one against the other (the global
against the local).

Suppose, then, that K is a number field, and Kv is some completion of K (non-
archimedean or archimedean). We have the global-to-local restriction mappings

H1(K,T ) −→
∏
v

H1(Kv, T ),

(denoting by
∏

v hv the image of the global cohomology class h)
and

H1(K,T ∗) −→
∏
v

H1(Kv, T ∗).

Let us consider how duality enters the story, beginning with the local situation.
Let v be a place of K. We have that the cup pairing

H1(Kv, T )×H1(Kv, T ∗) → H2(Kv, µ) ⊂ Q/Z
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is a perfect pairing. Hence the cohomology class hv may be identified with the
functional “cupping with hv”, hv : H1(Kv, T ∗) → H2(K, µ).

In contrast, Global Class Field Theory tells us that if we compose the global
(cup-product) pairing

H1(K, T )×H1(K,T ∗) → H2(K, µ)

with the homomorphism H2(K, µ) → Q/Z which is given by summing local invari-
ants, we get a beautiful bilinear pairing

H1(K, T )×H1(K, T ∗) → Q/Z

which has the virtue of vanishing identically.

How can we make this disparity work for us?

We wish to impose local conditions on the restrictions of global cohomology
classes to Kv for places v. To prepare for this let us simply call a local condition
F at v (for T ) any choice of subgroup, which we denote

H1
F (Kv, T ) ⊂ H1(Kv, T ).

By the singular cohomology for such a local condition F , which we will just
denote H1

S(Kv, T ), we mean the quotient group

H1
S(Kv, T ) := H1(Kv, T )/H1

F (Kv, T ).

We get then an exact sequence,

0 −→ H1
F (Kv, T ) −→ H1(Kv, T ) −→ H1

S(Kv, T ) −→ 0. (1)

Given such a local condition at v, Tate Duality allows us to stipulate a “dual” local
condition at v (for T ∗), namely, H1

F∗(Kv, T ∗) ⊂ H1(Kv, T ∗) is defined to be the
annihilator subgroup of H1

F (Kv, T ) under the Tate pairing, and the dualization of
the above exact sequence yields

0 −→ H1
F∗(Kv, T ∗) −→ H1(Kv, T ∗) −→ H1

S∗(Kv, T ∗) −→ 0. (2)

The natural choice. If Kv is nonarchimedean let Ov be the ring of integers in
Kv, Fv its residue field, and Kunr

v ⊂ K̄v the maximal unramified subfield of K̄v.
Let Iv denote the inertia group Gal(K̄v/Kunr

v ), and GFv := Gal(Kunr
v /Kv). These

groups fit into the exact sequence

{1} −→ Iv −→ GKv −→ GFv −→ {1}. (3)

Note that if F̄v is an algebraic closure of Fv, then GFv
∼= Gal(F̄v/Fv) ∼= Ẑ (the

latter isomorphism sending the Frobenius automorphism in Gal(F̄v/Fv), x 7→ x|Fv|,
to 1 ∈ Ẑ).

The vanishing of H2(GFv , T Iv ) yields the canonical exact sequence

0 −→ H1(GFv , T Iv ) −→ H1(Kv, T ) −→ H1(Iv, T )GFv −→ 0. (4)

Now the above exact sequence presents a “natural” choice of local condition
for any nonarchimedean v; namely we could take H1

F (Kv, T ) to be equal to
H1(Fv, T Iv ) ⊂ H1(Kv, T ). In this case, H1

S(Kv, T ) = H1(Iv, T )GFv and If T
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is unramified for at v the“natural choices” for T and for T ∗ are dual under Poitou-
Tate duality. In particular, we may identify elements of H1

S(Kv, T ) with linear
functionals on H1

F∗(Kv, T ∗).

Let us return to the global situation and say that a Selmer structure F on a
(finite) GK-module T is a local condition Fv at all v which is the “natural choice”
for almost all v. The dual of Selmer structure for T is a Selmer structure for T ∗.
Note that if we are given a Selmer structure for T the global-to-local mapping
H1(K, T ) → H1

Sv
(Kv, T ) vanishes for almost all v, and therefore we have a well-

defined global-to-local homomorphism

H1(K,T ) →
⊕

v

H1
S(Kv, T ).

By the Selmer group SelF (K,T ) associated to (T,F) let us mean the kernel
of the above homomorphism. So we have an exact sequence:

0 −→ SelF (K,T ) −→ H1(K,T ) −→
⊕

v

H1
S(Kv, T ). (5)

and, dually,

0 −→ SelF∗(K,T ∗) −→ H1(K,T ∗) −→
⊕

v

H1
S∗(Kv, T ). (6)

We can now say what the basic mechanism is which allows global cohomology
to bound Selmer groups: given any global cohomology class h ∈ H1(K, T ) consider
its image, ⊕

v

hSv ∈
⊕

v

H1
Sv

(Kv, T ),

and note that since the global duality mapping as displayed above is zero, we get
a “semi-local” relation satisfied by any class σ ∈ SelF (K, T ). namely,

∑
v

hSv (σv) = 0.

Given enough of these relations, we can completely describe SelF (K, T ). in good
cases.

2. Euler Limits. We recall here the notion of Euler systems [R] (with some
minor modifications). Let R be a complete noetherian local ring with finite residue
field of characteristic p. Let K be a number field, K̄/K an algebraic closure, and F
be an “intermediate field”; i.e., a field F such that K ⊂ F ⊂ K̄, so GF ⊂ GK is the
subgroup which fixes the elements of F ; if F/K is Galois, let G(F/K) ∼= GK/GF be
its Galois group. If M is a compact R-module equipped with continuous GK-action
let H(F, M) := H1

F (GF ,M), i.e., H(F, M) is the R-module of one-dimensional
Galois cohomology of M over F , computed with continuous cochains, and with
some chosen Selmer structure F . We assume that F puts no condition on the
primes dividing p. If F/K is Galois, then H(F,M) is naturally an R[[G(F/K)]]-
module. Note that besides the covariant functoriality of H(F,M) in the pair (F,M)
we have a contravariant functoriality given by the corestriction, or norm, mappings
νF ′/F : H(F ′,M) → H(F,M) for finite (intermediate) field extensions F ′/F . More
generally, we might think of allowing H(F, M) in the discussion below to stand for
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any “decent” functor from pairs (F,M) to the category of R-modules which admits
“norms” (i.e., corestrictions).

Let T be a free R-module of finite rank equipped with a continuous R-linear
GK-action and which is unramified outside a finite set of primes of K. Let T ∗ :=
Homcont(T,Zp(1)) denote the dual GK-module. For each prime q of K fix φ−1

q ∈
GK , a choice of Frobenius-inverse element at q. If q is a prime of K unramified in
the action of GK on T ∗, form:

Pq(X) := det(1−Xφ−1
q |T ∗) ∈ R[X],

the characteristic polynomial of φ−1
q acting on the dual module, T ∗ := Homcont(T,Zp(1)).

This is well-defined since q is unramified in the action of GK on T ∗.
Fix N , a set of primes containing all ramified primes of T and the primes of K

lying above p. If F ′/F is an intermediate Galois extension, let Σ(F ′/F ;N ) denote
the (finite) set of primes of K not in N which are unramified in the extension F/K
and ramified in the extension F ′/K. Define:

P (F ′/F ;N ) :=
∏

q∈Σ(F ′/F ;N )

Pq(φ−1
q ) ∈ R[GK ],

noting that this element in the group ring depends upon the choices of Frobenius
elements, and on a choice of ordering of the factors in this product. However, since
the action of R[GK ] on H(F, T ) factors through the quotient ring R[[G(F/K)]],
and the primes q contributing to the above product are all unramified in F/K, we
see that the natural action of P (F ′/F ;N ) on H(F, T ) provides us with a unique
R-endomorphism

P (F ′/F ;N ) : H(F, T ) → H(F, T )
independent of choice of Frobenius elements if F/K is an abelian Galois extension.
Now let L/K be any “intermediate” abelian Galois extension.

Definition. By the N -Euler (projective) limit of the system

{H(F, T )}K⊂F⊂L

we mean the R[[G(L/K)]]-module of systems of elements

{cF ∈ H(F, T )}K⊂F⊂L

satisfying the following compatibility for finite intermediate extensions F ⊂ F ′:

νF ′/F · cF ′ = P (F ′/F ;N ) · cF .

Provisional notation for this R[[G(L/K)]]-module could be

E.S.(L/K, T ) := EulerLimF→LH(F, T )

when the choice of N is understood. We will refer to this as the R[[G(L/K)]]-
module of Euler systems for (L/K, T ;N ) noting, however, that the term Euler
systems is reserved in [R] (Defn. 2.1.1) for the more restricted situation where L
contains all the ray class fields over K relative to primes not dividing N and it
contains a Zp-extension in which no (finite) prime of K splits completely.

Comments. If L/K is unramified outside N , then the “Euler limit” is just the
standard inverse limit compiled via norms. In particular, this is the case if L/K
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is a Zp extension. A nontrivial element in E.S.(L/K, T ) corresponds to a large
number of cohomology classes all compatible in this Euler limit way, something of
a hyper- universal norm! We will restrict attention, below, to p-abelian extensions
L/K. [Note: For some remarks and queries about universal norms, see Appendix
B below.]

In our present case, let Γ denote the quotient of the compact p-abelian group
G(L/K) by its torsion subgroup. Let K∞/K be the fixed subextension of L/K un-
der the torsion subgroup of G(L/K). Then we have a natural surjection G(L/K) →
G(K∞/K). Putting Γ := G(K∞/K) we have G(K∞/K) ∼= Zd

ν for some non-
negative integer ν (which we can call the Zp-rank of L/K). Put Λ := R[[Γ]].

Let us denote:

H∞(F, T ) := proj.lim.F→K∞H(F, T ).

We have the natural homomorphism of Λ-modules,

E.S.(L/K, T )⊗R[[G(L/K)]] Λ −→ E.S.(K∞/K, T ) = H∞(F, T ).

Example. Let R, T be as above with K = Q and take L/K to be the maximal
p-abelian extension of Q. Let N denote the set containing the ramified primes for
T and the prime number p. Let Q(∞)/Q be the (cyclotomic) Zp-extension and
Q(n) ⊂ Q(∞) the subfield of degree pn over Q. It follows from the “weak Leopoldt
Conjecture” that

rankΛH∞(Q, T ) = d−,

where d− is the dimension of the minus eigenspace of the complex conjugation
involution acting on T . Also very reasonable hypotheses guarantee that H∞(Q, T )
has no Λ-torsion.

3. General Bounds.

Here are two “hypotheses” and it would be very good to establish them quite
generally.

Hypothesis A. The kernel of

E.S.(L/Q, T )⊗R[[G(L/K)]] Λ → H∞(Q, T )

is a Λ-torsion module.

Hypothesis B. If d− = 1 the characteristic ideal of the cokernel of

E.S.(L/Q, T )⊗R[[G(L/K)]] Λ → H∞(Q, T )

is equal to the characteristic ideal of the Selmer group of the (Cartier) dual Galois
representation T ∗ with dual Selmer structure F∗.

As for B. one has that under very general hypotheses the characteristic ideal of
the Selmer group of the (Cartier) dual Galois representation T ∗ with dual Selmer
structure F∗ divides the characteristic ideal of the cokernel of

E.S.(L/Q, T )⊗R[[G(L/K)]] Λ → H∞(Q, T ).
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But we can establish the full strength of B at present only in very few instances.
(For example, when T = Zp(1) ⊗ χ where χ an even nontrivial character of finite
order. Query: Can one show hypothesis A in this case?)

4. Bounds governed by L-functions

The example for which we have the most complete information, and which might
serve as a template for what we might try to get in other cases is given by taking
K = Q and T = Zp(1) ⊗ χ where χ an even nontrivial character of finite order.
Modify the Selmer structure on T by putting the natural local condition at p; and
form

H∞,S(Qp, T ) := proj.Limn→∞HS(Qp(n), T ).

Either of the two standard proofs of the classical main conjecture establishes the
fact that the Λ module E.S.(L/Q, T )⊗R[[G(L/K)]] Λ is generated by the cyclotomic
Euler system and the characteristic ideal of the cokernel

E.S.(L/Q, T )⊗R[[G(L/K)]] Λ −→ H∞,S(Q, T ),

is generated by the Leopoldt-Kubota L-function Lp(χ, s) viewed as element of Λ,
which is the characteristic ideal of the Iwasawa module constructed from of p-
primary components of ideal class groups of layers of the p-cyclotomic tower.

In the case of elliptic curves E defined over Q, working with the Heegner Euler
System over an anti-cyclotomic tower over a quadratic imaginary field, or using
Kato’s Euler System over the cyclotomic tower over Q one presently has divisibility
results (i.e., the characteristic ideal of the appropriate Selmer group divides the
ideal generated by corresponding p-adic L function (cf. Chapter 3 of [R]), and this
alone is enough to establish striking information about Mordell-Weil and Sha, as
the later lectures will explain, but in both cases we still await a general “main
conjecture.”

5. The combinatorial rigidity of Kolyvagin systems.

One of Kolyvagin’s many original insights is to make “maximal” use of the Euler
Systems of cohomology (these cohomology classes exist in various field extensions
of the base) by astutely descending these classes to get cohomology classes over
the base field, so as to be able to apply the duality methods of section 1. The
collection of classes one gets over the base have a tight structure (see my article
with Karl Rubin ”Kolyvagin Systems”). If, for example, one’s ring of scalars R = k
is a finite field, and the Galois representation T satisfies certain reasonably gen-
eral hypotheses, we show that the system of cohomology classes can be thought of
as a section of a linear system of one-dimensional k-vector spaces over a certain
connected subgraph of the multiplicative graph of natural numbers. It follows (in
this situation) that just by the combinatorial constraints that these Kolyvagin co-
homology classes satisfy, Kolyvagin systems, if they exist, are uniquely determined
up to normalization. Moreover, Ben Howard has recently demonstrated that the
linear systems in question have no monodromy (i.e., are constant) and therefore
that the Kolyvagin systems of cohomology classes do exist, irrespective of whether
a corresponding Euler system exists.
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To give a flavor of the combinatorial nature of these Kolyvagin systems, let me
illustrate what it boils down to in the case of an elliptic curve E over Q. For
simplicity, make the
Irrelevant hypothesis: L(E, 1) 6= 0 and E(Q) is a finite group of order relatively
prime to p.

Remark. L(E, 1) 6= 0 implies that E(Q) is a finite group. I am making the hy-
pothesis above only because it simplifes some of the terminology and statements of
the propositions below. We begin by discussing E-curves, i.e., torsors over E, these
being given by cohomology classes in H1(GQ, E). An E-curve is split at a prime `
(resp., at “infinity”) if it has a point over Q` (resp., over R). The Shafarevich-Tate
group of E, Sha(E), is nothing more than the group of Q-isomorphism classes of
everywhere split E-curves. We let Sha′(E) denote the group of E-curves which
are split at all places different from p. The order of an E-curve is its order as a
cohomology class. If C is an E-curve of order pν , then C is (thanks to our irrel-
evant assumption) also given by a unique element in c = c(C) ∈ H1(GQ, E[pν ]).
For a prime number ` dividing pν − 1, say that an E-curve C is transverse at
` if its cohomology class c(C) ∈ H1(GQ, E[pν ]) goes to zero under the natural
homomorphism

H1(GQ, E[pν ]) → H1(GQ`(µ`), E[pν ]).
The condition of transversality is stronger than the requirement that the E-curve
C is split over Q`(µ`) but weaker than the requirement that C is split over Q`. Let
Nν be the set of positive squarefree integers n which are divisible only by primes
congruent to 1 mod pν . For n ∈ Nν let H(n;Z/pνZ) denote the Z/pνZ-module
of E-curves which are transverse at all divisors of n and split at all primes not
dividing pn. Thus (given our irrelevant assumption ) H(1;Z/pνZ) = Sha′(E)[pν ],
the kernel of multiplication by pν in Sha(E)′.

Fix ν ≥ 1. Form the graph Xν whose vertices are the integers n ∈ Nν and
whose edges are in one:one correspondence with pairs of vertices n, n` in Nν , these
vertices being its endpoints.

Definition: A simplicial sheaf on Xν is . . . .

To illustrate things let us restrict attention to ν = 1. One constructs a canonical
sheaf S on X whose stalk at a vertex n is given by S(n) := H(n;Z/pZ) ⊗W (n),
where W (n) is the Fp vector space of dimension one given by W (n) := ⊗` | nF∗` ⊗
Fp. One then restricts this sheaf to the subgraph X ′ ⊂ X on which each stalk is
of dimension one. A Kolyvagin system in this context is simply a trivialization of
this subsheaf.

Appendix A. The `-asymptotics of Sha as one ascends a p-cyclotomic
tower. The p-adic “main conjecture” for elliptic curves packages much that
one might want to understand about p-asymptotics of Sha as one ascends a p-
cyclotomic tower, but I have never heard, or read, any mention of the perfectly
natural companion question alluded to in the title of this section, when ` 6= p. The
natural guess here, is to follow the lead of Larry Washington’s 1978 Inventiones
article where he proves that if ` 6= p, k is any abelian number field, kn/k the n-th
layer of the p-cyclotomic Zp-extension of k, (n = 1, 2, . . . ), and `en the exact power
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of ` dividing the class number of kn. then en is constant for n sufficiently large. If
we allow ourselves to be influenced by that, and by the “standard analogy” between
ideal class groups and Sha, a first guess might be that if ` 6= p, and E is an elliptic
curve over k such that the Gk-representation on E[`] is absolutely irreducible, then
the order of the `-primary component of Sha(E/kn) is constant for n sufficiently
large. It would be even more interesting if there were counter-examples to this
first guess. Using modular symbols, how hard would it be to get data on this? I
also wonder whether people have considered the analogous questions for arithmetic
K-groups.

Appendix B. “Pure” Λ-modules and Universal norms.

Pure Λ-modules. Let

Λn := Zp[Z/pnZp] = Zp[ξ]/(1− ξpn

)

and Λ = Zp[[Zp]] = proj.lim.n→∞Λn. We denote by ξ ∈ Λ the element that projects
to the ξ’s in all the Λn’s. If M is a Λ-module, put

Mn := M ⊗Λ /Λn = M/(1− ξpn

)M.

If M is finitely generated as Λ-module, say that M is pure if Mn is a free Zp

module for all n ≥ 1. If W is a Zp module, let W̄ be the torsionfree quotient of W ;
i.e., it is the quotient of W by its torsion submodule. If M is a finitely generated
Λ-module, its pure quotient is the Λ-module M̃ := proj.lim.n→∞M̄n. Since sub-
Zp modules of torsionfree Zp modules are again free, it follows that M̃ is indeed
pure. A finitely generated Λ-module M is “Γ-finite” (in Iwasawa’s terminology) if
and only if its pure quotient is trivial. For any finitely generated Λ-module M we
have a canonical exact sequence of Λ-modules

0 → Mf → M → M̃ → 0,

where Mf is the maximal Γ-finite Λ-submodule of M , and M̃ is its pure quotient.
A pure Λ-module is isomorphic modulo the class C of finite modules (i.e., is pseudo-
isomorphic to the direct sum of a free Λ-module and a module on which the action
of ξ is of finite order. If W is a module over an integral domain A, by the A-rank
of M , denoted rA(M), we mean the dimension over Frac(A), the field of fractions
of A, of the vector space M ⊗A Frac(A). Any finitely generated Λ-module M has
the property that

rZp(Mn) = rZp(M̃n) = rΛ(M) · pn + constant

for n sufficiently large.
By a co-pure Λ-module (of cofinite type) let us mean a Λ module W with the

property that if Wn is the submodule of W consisting of elements which are fixed by
ξpn

, then the Wn’s are all free modules (of finite rank) over Zp and W =
⋃∞

n=1 Wn.
We have a nice Zp duality theory between pure and co-pure Λ-modules as follows. If
W is co-pure put Mn := HomZp(Wn,Zp); then M := proj.lim.n→∞Mn is pure and
we will refer to it as the Zp-dual of W , denoting it W ∗ := M . If M is any Λ module
of finite type, then, put Wn := HomZp(Mn,Zp); then W := ind.lim.n→∞Wn is co-
pure and we will refer to it as the Zp-dual of M , denoting it M∗ := W . The Zp-dual
of M may be identified with the Zp-dual of its pure quotient, M̃ , and if M is of
finite type, we have a canonical identification of its pure quotient with its double



AN INTRODUCTORY LECTURE ON EULER SYSTEMS 11

Zp-dual. The operation of Zp-duality preserves pseudo-isomorphisms, and finite
direct sums.

Universal norms. For integers 0 ≤ n ≤ m consider the “norm element” νm,n ∈
Zp[ξ]/(1− ξpm

) defined by the formula

νm,n :=
pm−n−1∑

α=0

ξαpn

.

If W is a Λ-module, note that νm,nWm ⊂ Wn ⊂ Wm. Define the Λ-module of
universal norms of W , denoted UN(W ) by setting

UN(W )(n) := ∩m→∞νm,nWm

for each n ≥ 0 and putting UN(W ) := proj.lim.n→∞UN(W )(n). The operation
UN preserves pseudo-isomorphisms, and finite direct sums.

Note that if W is a co-pure Λ-module of cofinite type, then UN(W ) is a pure
Λ-module of finite type. Let us start now with a Λ-module M of finite type and
form UN(M∗), the module of universal norms of its Zp-dual. This operation M 7→
UN(M∗) factors through M → M̃ and preserves pseudo-isomorphisms, and finite
direct sums. Let us analyze this operation in two cases.
• Let M = Λ viewed as (free, rank 1) Λ-module. So Mn = Λn, M∗

n =
HomZp(Λn,Zp), and one sees that for all 0 ≤ n ≤ m, νm,n : M∗

m → M∗
n is

surjective, and therefore UN(M∗)(n) = M∗
n. We may have an isomorphism ιn :

Λn
∼= HomZp(Λn,Zp) as Λ -modules given by sending the element

∑pn−1
j=0 λjξj to

the Zp-homomorphism that takes the value λj on ξj (for j = 0, . . . , pn − 1). The
ιn’s are compatible with norms, in the sense that πm,n · ιn = ιm · νm,n, where
πm,n : Λm → Λn is the natural projection. It follows that UN(M∗) is free over Λ
of rank 1, that UN(M∗)(n) = UN(M∗)n (= M∗

n) (where the lower index n of a
lambda-module is defined as in section 1).
• Let M be a Λ on which the action of ξ is of finite order. Here it is evident that

UN(M∗) = 0.

Proposition. Let M be any Λ-module of finite type. Then UN(M∗) is a Λ-
torsionfree module of Λ-rank equal to the Λ-rank of M . Moreover the mappings

UN(M∗)n → M∗
n

are injective for all n ≥ 0.

Proof. Since the passage M 7→ M∗ factors through pure quotients, we may
suppose that M is pure. Hence, up to pseudo-isomorphism M is a finite direct sum
of a free Λ-module and one on which the action of ξ is of finite order. Since our
operation M 7→ UN(M∗) preserves pseudo-isomorphisms, and finite direct sums,
the analysis we have already made proves our proposition.

Remark. In particular, we have a canonical Qp vector subspace of M∗
1 ⊗Zp Qp

of dimension equal to the Λ-rank of M given by the image of UN(M∗)∗1 ⊗Zp Qp

(call it the universal norm subspace). Now the recent work of Vatsal, Cornut,
Bertolini (also Zhang) concerning the p-adic pro-Selmer group relative to the p-
anticyclotomic Zp-extension over quadratic imaginary fields K an elliptic curve E
over Q establishes the fact that (for primes p of good, ordinary reduction for E,
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and for quadratic imaginary fields K satisfying the appropriate splitting properties
for primes dividing the conductor of E) this Selmer group is a free Λ-module of
rank 1. I will also assume, unnecessarily surely, that E doesn’t contain nontrivial
K-rational points of order p. We have that the pro-p Selmer group, i.e., the one
built from Galois cohomology of the Tate module TpE, (for the p-anticyclotomic
Zp-tower over K) is co-pure of co-finite type, and is the Zp-dual of a module of
Λ-rank equal to 1. It follows, assuming finiteness of the p-primary component of
Sha(E; K), that the universal norm subspace as described above is a Qp subspace
of dimension one (a line) in E(K)⊗Zp

Qp. It is immediate that this line is in the
null-space of the p-adic height pairing

E(K)⊗Zp
Qp × E(K)⊗Zp

Qp → Qp

attached to the p-anticyclotomic Zp-extension of K. What more can one say about
this line? The Q vector space E(K)⊗ZQ has odd dimension (denote it ρ), given the
conditions regarding K that we alluded to above but didn’t write down. The vector
space breaks up into the “plus” and “minus” eigenspaces for the action of complex
conjugation on K, whose unequal dimensions we denote ρ±, so that ρ = ρ++ρ−. It
is natural to guess that the null-space of the p-adic (anti-cyclotomic) height pairing
is in the eigenspace for complex conjugation which has the larger of the two ranks.
Therefore, if this guess were true, it would follows from this that the universal norm
line would lie in E(K) ⊗Zp Q±

p where the sign ± is given by whichever of ρ± is
the larger. Assuming our guess, one might wonder about the “placement” of the
universal norm line, defined over Qp, in the Q-vector space E(K) ⊗Z Q±. One
would expect it to be as transcendental as possible, barring any further ideas about
how it might be constrained . . .
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