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Let E/R/R0 be an elliptic curve over an R0-algebra R, where R0 = OK with
[K : Qp] < ∞. Now consider E/K, then we have two cases:

v(E) ∈
{

not defined if E is very supersingular
[0,1) ∩Q otherwise

(1)

Theorem 1. (Katz-Lubin) If

v(E) <





p
p+1 if p ≥ 5

p
2(p+1) if p = 3

p
4(p+1) if p = 2

(2)

then E has a ”canonical” subgroup of ord=p.

Remark 1. v(E) = 0 ⇔ E has ordinary reduction, and then the canonical subgroup is
just the kernel of the reduction map on its p-torsions.

Assume v(ρ) < cp, where cp denotes the number on the right of (2) corresponding to different p’s. If
(E/R, ω, Y ) is a ρ-overconvergent test object, then v(EK) ≤ v(ρ) < cp. So E has a canonical subgroup
H, and (E/R, ω,H) is a classical test object plus a subgroup of order p. A rule on these objects is a
classical modular form of level p. Hence we get a map from classical modular forms of level p over K0 to
ρ-overconvergent forms of level 1. So we also have a Up operator acting on the ρ-overconvergent forms. If f
is a ρ-overconvergent, then

Remark 2. Let E/K have v(E) < cp, and H be the canonical subgroup, then
(1) If C is a subgroup of order n with (n, p) = 1 then v(E/C) = v(E),
(2) If C is not canonical then v(E/C) = 1

pv(E),
(3) If v(E) < 1

pcp then v(E/C) = pv(E), so in fact Up maps ρ-overconvergent forms to ρP -overconvergent
forms.

Definition 1.

Mk(K0, ρ) = (ρ− overconvergent forms of weight k defined over R0)⊗K0.

Then Mk(K0, ρ) is a p-adic Banach space over K0.

As the remark indicates, we will have Hecke operators Tl for l 6= p acting on Mk(K0, ρ), and Up:
Mk(K0, ρ) →Mk(K0, ρ

p).
While at the same time there is a natural inclusion

Mk(K0, ρ
p) −→Mk(K0, ρ)
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where v(ρ) < 1
pcp.

Hence we get a map
Up :Mk(K0, ρ) −→Mk(K0, ρ)

One can also get Up(
∑

anqn) =
∑

anpq
n.

Remark 3. Tl’s are continuous. Up is even better than that! Let V be a big infinite dimensional p-adic
Banach space, and assume e1, e2, . . . is a countable Banach basis of V . Then every v ∈ V can be written
uniquely as

v =
∑

aiei,with am → 0, an ∈ K0

Let T : V → V be a continuous operator, and T (ei) =
∑

cjiej. So cji is the matrix of T with respect to
the basis. Then the queation is: does this matrix have a trace? Of course one cannot expect an affirmative
answer in general as the identity matrix has no trace.
But the operator T : ei → piei of V has a trace=

∑
pi = p

1−p .

Now denote L(V, V )=continuous linear maps:V → V . L(V, V ) inherits a norm from V . Let F be the
subspace consisting of the maps whose image is finite dimensional. We define compact operators to be the
closure of these F ’s.

Compact operators have traces, and even better, they have a spectral theory. Now say C is a compact
linear operator, i.e. C = limn→∞ Cn, where Cn : V → V have finite dimensional images. Put

Pn(X) = det(I −XCn) = 1− tnX + · · ·+ (−1)ndet(Cn)Xn

then Pn’s converge to a power series P ∈ K0[[X]] called the characteristic power series of C.

Example:Let Cn =
(

a 0
0 1

)
, C = lim Cn. Then

Pn(X) =
n∏

i=1

(1− piX)

therefore

P (X) =
∞∏

i=1

(1− piX) ∈ K0[[X]]

and P (x) converges ofor any x ∈ K0.

Now we have a very nice result

Theorem 2. If v(ρ) ∈ (0, 1
pcp), then Up : Mk(K0, ρ) −→Mk(K0, ρ) is compact.

Re-interpretation of G-M: Fix ρ such that 0 < v(ρ) < 1
pcp. Recall that Mk(Γ0(p),K0) denotes the

classical modular forms with weight k of level p over K0. Then we have a Up-covariant linear injection

Mk(Γ0(p),K0) −→Mk(K0, ρ)

Mk(Γ0(p),K0) = (old part)⊕ (new part). Up acts differently on these two parts:
(1) if f ∈(old part), then Up(f) = apf and Up has eigenvalues as roots of X2 − apX + pk−1, both of which
have valuation≤ k − 1,
(2) if f ∈(new part), then Up has eigenvalues ±p

p−2
2 . Therefore if λ is a Up-eigenvalue on the classical forms,

then v(λ) ≤ k − 1. The converse is almost true!
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Theorem 3 (Coleman). Assume f ∈ Mk(K0, ρ) is an eigenform for Up, Tl, and the Up-eigenvalue is λ.
If v(λ) < k − 1 then f ∈ the image of Mk(Γ0(p),K0).

Definition. v(λ) is called the slope of the overconvergent form f .
Hence one can retrieve classical forms as being ”overconvergent forms of small slope”.

Gouvea-Mazur Conjecture. Let k ∈ 2Z, α ∈ Q, Mk(K0, ρ), and d(k, α) = ]{eigenvalues of Up with
valuation α}. Then k1 ≡ k2 (mod (p− 1)pm), for m ≥ α, will imply that d(k1, α) = d(k2, α).

Theorem 4 (Coleman). If Pk(X)=char power series of Up acting on Mk(K0, ρ), then Pk varies analyti-
cally with k.

This theorem implies that d(k, α) is a ”locally constant” function of k.

Proposition 2. If k1 ≡ k2 (mod (p− 1)pm), and α < O(
√

m), then d(k1, α) = d(k2, α).

Example of the Spectrum of Up.
Let’s seek the structure of U2 on M0(K0, ρ) (i.e. k = 0, N = 1). Let the char power series of U2 be

∑

n≥0

anXn =
∏

i≥0

(1− λiX).

The question is: what are the valuations of λi?
Inspired by a method of Kilford, we find that:

Theorem 5. (Buzzard, Calegari) The valuations are 3,7,13,15,17,. . . , where the ith term is given by

1 + 2v2

(
(3i)!
i!

)
.

Proof. Let’s write down a basis for M0(K0, ρ) (the basis depends on ρ although the characteristic p.s. of ρ
does not), say,

1, αf, α2f2, α3f3, · · ·
where

f =
∆(q2)
∆(q)

= q + 24q2 + · · ·

and α = α(ρ), α ∈ Q̄2, |α| < 1.
The matrix of U2 is:

U2(fm) =
2m∑

n=dm
2 e

sm,nfn

where
sm,n = 28n−4m−1 · 3m(m + n− 1)!/(2n−m)!(2m− n)!

Write U2 = A · B, where A is lower triangular, B is upper triangular, with 1’s on both diagonals. Actually
we can compute the entries Aij and Bij .

Now let A = C ·D with D diagonal, then

Dii = 21+2v((3i)!/i!)

Once we take α = 26: it changes Cij and Bij by 26(j−i). Then the following lemma concludes the proof.

Lemma 3. After making the change if C ≡ B ≡ Id mod 2, then the slopes of the characteristic power
series of U2 and D are the same.

3


