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Lecture 2

• We know modular forms exist because over C there exists an explicit
example (according to the classical definition), namely the Eisenstein series:
Ek : τ 7→ ∑

m,n∈Z
not both 0

1
(mτ+n)k , k ≥ 4. This is a level 1 modular form of

weight k. A known fact is that Ep−1 ≡ 1 (mod p), where p is prime and
p ≥ 5. So in the ring Zp[[q]], Ep−1 “looks” invertible becuase it has a power
series where the constant term is a unit. However, no classical forms are of
negative weight so 1/Ep−1 is not a classical form. In addition, for example,
E4(πi/3) = E4(i) = 0 so 1/E4 is not a holomorphic function on the upper
half plane.

• The following is the Deligne/Katz approach to defining a p-adic modular
form.

We have E/R, where E is an elliptic curve over R, an Fp-algebra. Now
let ω ∈ H0(E, Ω1

E/R) and η ∈ H1(E,OE) be its dual. Consider the absolute
Frobenius map, Fabs : OE → OE, f 7→ f p, an additive homomorphism of
sheaves of abelian groups. Now define A(E/R, ω) ∈ R, (which is actually
the Hasse invariant) by setting F ∗

abs(η) = A(E/R, ω) · η which gives us that
A(E/R, λω) = λ1−pA(E/R, ω), λ ∈ R×.

So A is a modular form of weight p − 1. Note that the boundedness
condition for a modular form is satisfied by looking at A(Tate(q), ωcan) since
the restriction of a plane curve over Fp[[q]] is the Tate curve over Fp((q)).
Now A(Tate(q), ωcan) = 1 so if p ≥ 5, then Ep−1 ≡ A (mod p). Therefore
A = Ep−1 (mod p) by the q-expansion principle, which says that two modular
forms of level 1 and the same weight are equal if they have the same q-
expansion.

We want a p-adic theory of modular forms that strongly identifies a mod-
ular form with its q-expansion so that what “looks” invertible, as in Ep−1

(mod p), is invertible. So because the Hasse invariant A(E/R, ω) = 0 if and
only if E is supersingular, we want to somehow throw away elliptic curves
which are supersingular or have supersingular reduction.
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• Katz’s definition of a p-adic modular form:
Let p ≥ 5, R0 be the ring of integers in a finite extension of Qp, and R an
R0-algebra in which p is nilpotent.
A test object is

1. an elliptic curve E/R
2. a nowhere-vanishing differential ω ∈ H0(E, Ω1

E/R)

3. an element Y ∈ R such that Y · Ep−1(E/R, ω) = 1 ∈ R.

A p-adic modular form of level 1 of weight k defined over R0 is a rule f
sending (E/R, ω, Y ) to an element of R such that

a) f(E/R, λω, λp−1Y ) = λ−kf(E/R, ω, Y )
b) f(Tate curve over R0/p

nR0((q)), ωcan, 1) is in R0/p
nR0[[q]] for all n ≥ 1.

and f depends only the isomorphism class of data and behaves well under
pullback.

Note that classical modular forms over R0 are already p-adic modular forms.

• The class of p-adic modular forms is too large to work with, but we can
create subtlety through the following definition:
Let R0 be the ring of integers in a finite extension of Qp and choose ρ ∈ R0\0,
and R an R0-algebra in which p is nilpotent.
A ρ-overconvergent test object is

1. an elliptic curve E/R
2. a nowhere-vanishing differential ω ∈ H0(E, Ω1

E/R)

3. an element Y ∈ R such that Y · Ep−1(E/R, ω) = ρ.

A ρ-overconvergent modular form is a rule on these test objects satisfying
the conditions (a) and (b) in the definition of a p-adic modular form.

Note that if |ρ| < 1 then some of these test objects might have supersin-
gular geometric fibers.

• We don’t want to throw away too much so the idea is to define E, an ellip-
tic curve, as having “very supersingular reduction” if A(E(mod p) / R/pR) =
0 ∈ R/pR. Now if R is the ring of integers in a highly ramified extension of
Qp then R/pR could be huge so maybe there are a lot of elliptic curve whose
reductions are supersingular but not very supersingular.
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