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Introduction

History. In 1986, Francisco Thaine [Th] discovered a remarkable method to
bound ideal class groups of real abelian extensions of Q. Namely, if F' is such a
field, he used cyclotomic units in fields F'(u,), for a large class of rational primes ¢,
to construct explicitly a large collection of principal ideals of F'. His construction
produced enough principal ideals to bound the exponent of the different Galois-
eigencomponents of the ideal class group of F, in terms of the cyclotomic units
of F. Thaine’s results were already known (as a Corollary of the proof by Mazur
and Wiles [MW] of Iwasawa’s “Main Conjecture”) but Thaine’s proof was very
much simpler. The author [Rul] was able to apply Thaine’s method essentially
unchanged to bound ideal class groups of abelian extensions of imaginary quadratic
fields in terms of elliptic units, with important consequences for the arithmetic of
elliptic curves with complex multiplication.

Shortly after this, Kolyvagin [Ko1] discovered independently a similar remark-
able method, in his case to bound the Selmer group of an elliptic curve. Suppose
E is a modular elliptic curve over Q, with sign +1 in the functional equation of
its L-function. Kolyvagin’s method used Heegner points on E over anticyclotomic
extensions of prime conductor of an imaginary quadratic field K (in place of cy-
clotomic units in abelian extensions of Q) to construct cohomology classes over K
(in place of principal ideals). He used these cohomology classes, along with duality
theorems from Galois cohomology, to bound the exponent of the Selmer group of
FE over Q. The overall structure of his proof was very similar to that of Thaine.

Inspired by Thaine’s work and his own, Kolyvagin then made another funda-
mental advance. In his paper [Ko2] he introduced what he called “Euler systems.”
In Thaine’s setting (the Euler system of cyclotomic units) Kolyvagin showed how
to use cyclotomic units in fields F(u,.), for a large class of integers r (no longer
just primes), to bound the orders of the different Galois-eigencomponents of the
ideal class group of F, rather than just their exponents. Similarly, by using a larger
collection of Heegner points in the situation described above, Kolyvagin was able to
give a bound for the order of the Selmer group of E. Thanks to the theorem of Gross
and Zagier [GZ], which links Heegner points with the L-function of E, Kolyvagin’s
bound is closely related to the order predicted by the Birch and Swinnerton-Dyer
conjecture.

This book. This book describes a general theory of Euler systems for p-adic
representations. We start with a finite-dimensional p-adic representation 1" of the
Galois group of a number field K. (Thaine’s situation is the case where T is lim pe,,n
twisted by an even Dirichlet character, and Kolyvagin’s is the case where T is the
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viii INTRODUCTION

Tate module of a modular elliptic curve.) We define an Euler system for T' to
be a collection of cohomology classes in ¢z € H'(F,T), for a family of abelian
extensions F of K, with properties relating cg and cgp when F' C F’. Our main
results show how the existence of an Euler system leads to bounds on the orders of
Selmer groups attached to the Galois module Hom(T, /,pr), bounds which depend
only on the given Euler system.

The proofs of these theorems in this general setting parallel closely (with some
additional complications) Kolyvagin’s original proof. Results similar to ours have
recently been obtained independently by Kato [Ka2] and Perrin-Riou [PR5].

What we do not do here is construct new Euler systems. This is the deepest
and most difficult part of the theory. Since Kolyvagin’s introduction of the concept
of an Euler system there have been very few new Euler systems found, but each has
been extremely important. Kato [Ka3] has constructed a new Euler system for a
modular elliptic curve over Q, very different from Kolyvagin’s system of Heegner
points (see Chapter III §5). Flach [F]] has used a collection of cohomology classes
(but not a complete Euler system in our sense) to bound the exponent but not the
order of the Selmer group of the symmetric square of a modular elliptic curve.

One common feature of all the Euler systems mentioned above is that they are
closely related to special values of L-functions (and thereby to p-adic L-functions).
An important benefit of this connection is that the bounds on Selmer groups that
come out of the theory are then linked to L-values. Such bounds then provide
evidence for the Bloch-Kato conjectures [BK], which predict the orders of these
Selmer groups in terms of L-values.

Our definition of Euler system says nothing about L-values. If there is an Euler
system for T then there is a whole family of them (for example, the collection of
Euler system cohomology classes is a Z,-module, as well as a Gal(K /K )-module). If
one multiplies an Euler system by p, one gets a new Euler system but a worse bound
on the associated Selmer groups. The philosophy underlying this book, although
it is explicitly discussed only in Chapter VIII, is that under certain circumstances,
not only should there exist an Euler system for 7', but there should exist a “best
possible” Euler system, which will be related to (and contain all the information
in) the p-adic L-function attached to T.

A remark about genmerality. It is difficult to formulate the “most general” def-
inition of an Euler system, and we do not attempt to do this here. The difficulty
is partly due to the fact that the number of examples on which to base a general-
ization is quite small. In the end, we choose a definition which does not cover the
case of Kolyvagin’s Heegner points, because to use a more inclusive definition would
introduce too many difficulties. (In Chapter IX we discuss possible modifications
of our definition, including one which does include the case of Heegner points.)
On the other hand, we do allow the base field K to be an arbitrary number field,
instead of requiring K = Q. Although this adds a layer of notation to all proofs,
it does not significantly increase the difficulty. A reader wishing to restrict to the
simplest (and most interesting) case K = Q should feel free to do so.
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Organization. In Chapter I we introduce the local and global cohomology
groups, and state the duality theorems, which will be required to state and prove
our main results. Chapter II contains the definition of an Euler system, followed by
the statements of our main theorems bounding the Selmer group of Hom(7', p,))
over the base field K (§2) and over Zg—extensions K of K (§3).

Chapter III contains sample applications of the theorems of Chapter II. We
apply those theorems to three different Euler systems: the first constructed from
cyclotomic units, to study ideal class groups of real abelian fields (§III.2); the
second constructed from Stickelberger elements, to study the minus part of ideal
class groups of abelian fields (§I11.4); and the third constructed by Kato from
Beilinson elements in the K-theory of modular curves, to study the Selmer groups
of modular elliptic curves (§IIL.5).

The proofs of the theorems of Chapter II are given in Chapters IV through
VII. In Chapter IV we give Kolyvagin’s “derivative” construction, taking the Euler
system cohomology classes defined over abelian extensions of K and using them to
produce cohomology classes over K itself. We then analyze the localizations of these
derived classes, information which is crucial to the proofs of our main theorems.
In Chapter V we bound the Selmer group over K by using the derived classes of
Chapter IV and global duality. Bounding the Selmer group over K, is similar but
more difficult; this is accomplished in Chapter VII after a digression in Chapter VI
which is used to reduce the proof to a simpler setting.

In Chapter VIII we discuss the conjectural connection between Euler systems
and p-adic L-functions. This connection relies heavily on conjectures of Perrin-
Riou [PRA4]. Assuming a strong version of Perrin-Riou’s conjectures, and subject
to some hypotheses on the representation 7', we show that there is an Euler system
for T which is closely related to the p-adic L-function.

Chapter IX discusses possible variants of our definition of Euler systems.

Finally, there is some material which is used in the text, but which is outside
our main themes. Rather than interrupt the exposition with this material, we
include it in four appendices.

Notation. Equations are numbered consecutively within each chapter. Theo-
rem 4.2 means the theorem numbered 4.2 in section 4 of the current chapter, while
Lemma IT1.2.6 means Lemma 2.6 of Chapter III (and similarly for definitions, etc.).
The chapters are numbered I through IX, and the appendices are A through D.

If F is a field, F' will denote a fixed separable closure of F' and G = Gal(F/F).
(All fields we deal with will be perfect, so we may as well assume that F is an
algebraic closure of F.) Also F2P will denote the maximal abelian extension of F,
and if F' is a local field F™ will denote the maximal unramified extension of F'. If
F'is a global field and ¥ is a set of places of F, Fx, will be the maximal extension of
F which is unramified outside ¥. If K C F'is an extension of fields, we will write
K C, F to indicate that [F' : K] is finite.

If F is a field and B is a Gp-module, F'(B) will denote the fixed field of the
kernel of the map G — Aut(B), the smallest extension of F' whose absolute Galois
group acts trivially on B.
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If O is a ring and B is an O-module then Annp(B) C O will denote the
annihilator of B in O. If M € O then Bj; will denote the kernel of multiplication
by M on B, and similarly if M is an ideal. If B is a free O-module and 7 is an
O-linear endomorphism of B, we will write

P(7|B;z) = det(1 — Tz|B) € Olz],

the determinant of 1 — 7z acting on B.

The Galois module of n-th roots of unity will be denoted by p,,.

If p is a fixed rational prime and F' is a field of characteristic different from p,
the cyclotomic character ecyc : G — Z; is the character giving the action of Gp
on f,e, and the Teichmiiller character w : G — (Z, )tors is the character giving
the action of Gr on p, (if p is odd) or p, (if p = 2). Hence w has order at most
p — 1 or 2, respectively (with equality if ' = Q) and (g) = w™'e.y. takes values in
1+ pZ, (resp. 1+ 4Z,).

If B is an abelian group, Bg;y will denote the maximal divisible subgroup of B.
If p is a fixed rational prime, we define the p-adic completion of B to be the double
dual

B® = Hom(Hom(B, Q,/Z,),Qp/Z,)
(where Hom always denotes continuous homomorphisms if the groups involved
comes with topologies). For example, if B is a Z,-module then B" = B; if B
is a finitely generated abelian group then B” = B ®z Z,. In general B" is a Z,
module and there is a canonical map from B to B". If 7 is an endomorphism of B
then we will often write B™=° for the kernel of 7, B7=! for the subgroup fixed by
T, etc.
Most of these notations will be recalled when they first occur.
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I gave at the Institute for Advanced Study in October, 1995. Some of the work
and writing work was done while I was in residence at the Institute for Advanced
Study and the Institut des Hautes Etudes Scientifiques. I would like to thank both
the TAS and the THES for their hospitality and financial support, and the NSF for
additional financial support.

I am indebted to many people for numerous helpful conversations, especially
Avner Ash, Ralph Greenberg, Barry Mazur, Bernadette Perrin-Riou, Alice Silver-
berg, and Warren Sinnott. I would also like to thank Tom Weston and Christophe
Cornut for their careful reading of the manuscript and their comments, and the
audiences of graduate courses I gave at Ohio State University and Stanford Uni-
versity for their patience as I was developing this material. Finally, special thanks
go to Victor Kolyvagin and Francisco Thaine for their pioneering work.



CHAPTER I
Galois cohomology of p-adic representations

In this chapter we introduce our basic objects of study: p-adic Galois represen-
tations, their cohomology groups, and especially Selmer groups.

We begin by recalling basic facts about cohomology groups associated to p-
adic representations, material which is mostly well-known but included here for
completeness.

A Selmer group is a subgroup of a global cohomology group determined by
“local conditions”. In §3 we discuss these local conditions, special subgroups of
the local cohomology groups. In §4 we state without proof the results we need
concerning the Tate pairing on local cohomology groups, and we study how our
special subgroups behave with respect to this pairing.

In §5 and §6 we define the Selmer group and give the basic examples of ideal
class groups and Selmer groups of elliptic curves and abelian varieties. Then in
§7, using our local orthogonality results from §4 and Poitou-Tate duality of global
cohomology groups, we derive our main tool (Theorem 7.3) for bounding the size
of Selmer groups.

1. p-adic representations

DEFINITION 1.1. Suppose K is a field, p is a rational prime, and O is the ring of
integers of a finite extension ® of Q,,. A p-adic representation of G = Gal(K/K),
with coefficients in O, is a free O-module T of finite rank with a continuous, O-linear
action of Gg.

Let D denote the divisible module ®/0O. For a p-adic representation T', we also
define

V=Tgo?,
W=V/T=T®%exD,
Wy =M'T/TCW for MecO,M#0,
so Wy is the M-torsion in W. Note that T determines V and W, and W determines

T = lim W)y, and V, but in general there may be different O-modules T' giving rise
to the same vector space V.

EXAMPLE 1.2. Suppose p : Gg — O is a character (continuous, but not
necessarily of finite order). Then we can take T'= O,, where O, is a free, rank-one
O-module on which Gk acts via p. Clearly every one-dimensional representation
arises in this way. When p is the trivial character we get 7' = O, and when O = Z,

1



2 I. GALOIS COHOMOLOGY OF p-ADIC REPRESENTATIONS

and p is the cyclotomic character
Eeye : G — Aut(pt,) = /s
we get

T2 7,(1) = lim .
V=Qy(l) =Q,®z, lim ge,n,

W =(Qp/2Zy)(1) = Hpoo -

For general O we also write O(1) = O ® Z,(1), (1) = & ® Q,(1), and D(1) =
D®Z,(1).

DEFINITION 1.3. If T is a p-adic representation of G then so is the dual
representation
T* = Homp (T, O(1)).
We will also write
V* = Homp(V, ®(1)) = Home (T, ®(1)) = T" @0 P,
W* =V*/T* = Homep(T,D(1)).

ExXAMPLE 1.4. If p : Gx — O is a continuous character as in Example 1.2
and T'= O,, then T* = O,

“legyer

EXAMPLE 1.5. Suppose A4 is an abelian variety defined over K, and p is a prime
different from the characteristic of K. Then we can take O to be Z, and T to be
the p-adic Tate module of A,

Tp(A) = lim Apn
where Ap,» denotes the p"-torsion in A(K), and we have rankz T = 2dim(A). If A
and A’ are isogenous, the corresponding Tate modules T' = T,,(A) and T" = T,,(A4’)
need not be isomorphic (as G g-modules), but the corresponding vector spaces V'
and V' are isomorphic.

If the endomorphism algebra of A over K contains the ring of integers Op of
a number field F', and p is a prime of F' above p, we can also take ® = Fj,, the
completion of F' at p, and

T =Ty(A) =lim Apr

which has rank 2dim(A)/[F : Q] over the ring of integers O of ®. If A is an elliptic
curve with complex multiplication by F' C K, this is another source of important
one-dimensional representations.

2. Galois cohomology

Suppose K is a field. If B is a commutative topological group with a continuous
action of G, we have the continuous cohomology groups

H'(K,B) = H (G, B),
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and if the action of Gk factors through the Galois group Gal(K'/K) for some
extension K’ of K, we also write
HY(K'/K,B) = H(Gal(K'/K), B)

See Appendix B for the basic facts which we will need about continuous cohomology
groups.

ExaMPLE 2.1. We have
HY(K, Qp/Zp) = Hom(Gk, Qp/Zy), HY(K, Z,) = Hom(Gk, Zy),
and by Kummer theory and Proposition B.2.3, respectively
HY (K, py) = KX & (Qp/Zy).
H' (K, Z,(1)) = lim H' (K. p,.) = lim K /(K" = KX &7,

where & denotes the (p-adically) completed tensor product.

Suppose T is a p-adic representation of Gx with coefficients in O as in §1, and
M € O is nonzero. Recall that V =T ®@ ® and W = V/T. We will frequently make
use of the following three exact sequences.

0 W w M w 0 (1)
0 T M M W 0,

I lel l (2)
0 T 1% 114 0

LEMMA 2.2. Suppose M € O is nonzero.

(i) The sequence (1) induces an exact sequence
0 — WO /MW — HYK, W) — HY (K, W)y — 0.
(ii) The bottom row of (2) induces an eract sequence
VOr WK — HY K, T)ors — 0.
(iii) The kernel of the map
HY(K,T) — HY(K,W)
induced by T — T/MT — Wy — W is
MHY(K,T)+ H' (K, T)tors-

PROOF. Assertions (i) and (ii) are clear, once we show that the kernel of the
natural map H'(K,T) — HY(K,V) is HY(K,T)tos. But this is immediate from
Proposition B.2.4, which says that the map H!(K,T) — H'(K,V) induces an
isomorphism H'(K, V)~ HY(K,T) ® Q,.
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The diagram (2) induces an exact commutative diagram

HYK,T) —— HY(K,T) —— HY (K, Wy)

I lm l
HYK,T) —2— HY(K,V) -2~ HYK,W)
with ¢ induced by M~ : T — V. Since
ker(¢3) = ¢2(H'(K,T)) = ¢1(MH' (K, T)),
we see that

ker(¢3 © ¢1) = MHl(K7T) + ker(¢1) = MHl(KvT) + Hl(KvT)tors
which proves (iii). O

3. Local cohomology groups

3.1. Unramified local cohomology. Suppose for this section that K is a
finite extension of Qy for some rational prime ¢. Let Z denote the inertia subgroup
of Gg, let K" = K7 be the maximal unramified extension of K, and let Fr €
Gal(K"™ /K) denote the Frobenius automorphism.

DEFINITION 3.1. Suppose B is a Gg-module. We say that B is unramified if

T acts trivially on B. We define the subgroup of unramified cohomology classes
HL,(K, B) € H'(K, B) by

H! (K,B) =ker(H'(K,B) — H'(Z, B)).
Note that if T is as in §1,
T is unramified < V is unramified < W is unramified

and if the residue characteristic £ is different from p, then this is equivalent to T,
V*, and/or W* being unramified.

LEMMA 3.2. Suppose B is a Gk module which is either a finitely generated Z,-
module, or a finite dimensional Qp-vector space, or a discrete torsion Zy-module.

(1) H&r(K,B)%Hl(K‘“/K,BI) =~ BZ/(Fr — 1)BZ.

i the residue characteristic £ o 1s different from p, then

ii) If th d h istic ¢ of K is diff fi h
HY(K,B)/Hy(K,B) = HY(Z,B)"".

PROOF. The first isomorphism of (i) follows from the inflation-restriction exact
sequence (Proposition B.2.5(i)). The second isomorphism of (i) (induced by the map
on cocycles ¢ — ¢(Fr)) is Lemma B.2.8.

The hypotheses on B guarantee (see Propositions B.2.5(ii) and B.2.7) that we
have a Hochschild-Serre spectral sequence

0 — HY(K“/K,B*) — HY(K,B) — HY(Z,B)"~! — H*(K™/K, BY).

Since Gal(K"/K) has cohomological dimension one, H?(K" /K, BT) = 0 so this
proves (ii). O
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COROLLARY 3.3. Suppose p # € and V is a Qu[Gk]-module which has finite
dimension as a Qp-vector space.

(i) dima, (HL (K, V) = dimg, (V).
(i) dima, (' (K, V)/HL (K, V)) = dimg, (H*(K, V)).
PRrROOF. Using Lemma 3.2(i) we have an exact sequence
0— Ve —yT 2L yT gl (K, V) —0

which proves (i).

Since p # ¢, T has a unique maximal p-divisible subgroup Z’ and Z/7" = Z,
(see [Fr] §8 Corollary 3). Thus both Z and Gal(K™ /K) have p-cohomological
dimension one. It follows that

H™K" /K, H"(Z,V)) =0

if m > 1 or n > 1. Therefore the Hochschild-Serre spectral sequence (Propositions
B.2.5(ii) and B.2.7) shows that

HYK™/K,H*(Z,V)) = H*(K,V).
On the other hand, Lemma 3.2 shows that
HYK™/K,H"(Z,V))= HYZ,V)/(Fr - 1)HY(Z,V),
HYK,V)/H. (K, V)= HY\(Z,V)"=!
so there is an exact sequence
0 — HYK,V)/H!(K,V) — HYZ,V) HYZ,V) — H*(K,V) — 0.
This proves (ii). O

Fr—1
—

3.2. Special subgroups. Suppose now that K is a finite extension of some
Q¢, but now we also allow ¢ = oo, i.e., K = R or C. Let T be a p-adic repre-
sentation of G, V =T ® ® and W = V/T as in §1. Following many authors
(for example Bloch and Kato [BK] §3, Fontaine and Perrin-Riou [FPR] §1.3.3,
or Greenberg [Gr2]) we define special subgroups H} (K, -) of certain cohomology
groups HY(K, -). We assume first that £ # p, oo, and discuss the other cases in
Remarks 3.6 and 3.7 below.

DEFINITION 3.4. Suppose ¢ # p, £ # oo, and define the finite part of H(K,V)
by
H{(K,V)=H}\.(K,V).
Define H}(K,T) C H'(K,T) and H}(K, W) C H'(K,W) to be the inverse image
and image, respectively, of H} (K, V) under the natural maps
HY(K,T) — HYK,V) — HY(K,W).

For every M € O define H}(K, W) C HY(K, W) to be the inverse image of
H}(K,W) under the map induced by the inclusion Wy — W.
Finally, for V, T, W, or W, define the singular quotient of H'(K, -) by
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so there are exact sequences
0— Hi(K, ) — H'(K, ) — HXK,-) — 0.
LEMMA 3.5. Suppose T is as above and £ # p, £ # oco. If A is a Z,-module let
Agiv denote its maximal divisible subgroup.
(i) Hp(K,W) = Hy (K, W)div-
(il) Hy, (K, T) C Hi(K,T) with finite index and H{(K,T) is torsion-free.
(iii) Writing W = W2 /(W?)aiy, there are natural isomorphisms

1
H ur

(K,W)/H}(K,W) = W/(Fr—1)W
and
H{(K,T)/HL(K,T) = W=t
(iv) If T is unramified then
(K, W).

ur ur

Hi(K,T)=H,(K,T) and Hj(K,W)=H,}

PROOF. It is immediate from the definitions that H}(K ,W) is divisible and
H(K,T) is torsion-free. The exact diagram

0 —— HY(K,T) —— HYK,T) —— HYZ,T)

! !

0 —— H}K,V) —— HYK,V) —— H'I,V)

! |

0 —— H!(K,W) —— HYK,W) —— HYZ,W)

shows that H(K,W) C H(K,W) and Hy(K,T) C H(K,T). The rest of
assertions (i) and (ii) will follow once we prove (iii), since W% /(W7 )q;, is finite.

Note that the image of VZ in W7 is (W7%)g;,. Taking Z-cohomology and then
Gal(K""/K)-invariants of the exact sequence 0 — T'— V — W — 0 gives an exact
sequence

0 — (WZ/(WZ)diV)Fr:I _ Hl (1—7 T)Fr:l _ Hl (I, V)Fr:l.
Therefore using Lemma 3.2 we have
Hp(K,T)/Hy (K, T) = ker(H' (K, T)/Hy (K, T) — H'(K,V)/Hy, (K, V))
=ker(HY(Z,T)"™=' — HY(Z,V)"=1)
(WI/(WI>diV)Fr=1,
Hy (K, W)/H}(K,W) = coker(H,,,(K,V) — H}.(K,W))
coker(VZ/(Fr — 1)V — WZ/(Fr — )W)
=W /(Wh) g + (Fr — HWT).

This proves (iii).
If T is unramified then W7 = W is divisible, so (iv) is immediate from (iii). O
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REMARK 3.6. When the residue characteristic £ is equal to p, the choice of a
subspace H}c (K,V) is much more subtle. Fortunately, for the purpose of working
with Euler systems it is not essential to make such a choice. However, to understand
fully the arithmetic significance of the Selmer groups we will define in §5, and to
get the most out of the applications of Euler systems in Chapter III, it is necessary
to choose a subspace H}(K, V) in the more difficult case £ = p.

In this case, Bloch and Kato define H}(K, V') using the ring B, defined by
Fontaine ([BK] §3). Namely, they define

H}(K,V) =ker (H'(K,V) — H'(K,V ® Beyis)) -

For our purposes we will allow an arbitrary special subspace of H!(K, V), which we
will still denote by H} (K,V). This notation is not as bad as it may seem: in our
applications we will always choose a subspace H}c (K, V) which is the same as the
one defined by Bloch and Kato, but we need not (and will not) prove they are the
same. One could also choose, for example, H;(K,V) =0or H{(K,V) = H'(K,V).

Once H}(K, V) is chosen, we define H}(K,T), H(K,W), and H}(K, W)y) in
terms of H} (K,V) exactly as in Definition 3.4.

REMARK 3.7. If K = R or C then HY(K,V) = 0, so H}(K, V) = 0 and
proceeding as above we are led to define
Hi(K,W) =0,
Hi(K,T)=H"(K,T),
H{ (K, W) = ker(H' (K, Wy) — H' (K, W)) = W /MW,
Note that all of these groups are zero unless K = R and p = 2.

LEMMA 3.8. Suppose M € O is nonzero.
(1) H}(K, W) is the image of H}(K7 T) under the map
HY(K,T) — H'(K,Wy)

induced by T — M~IT/T = Wyy.
(ii) If £ # p,00 and T is unramified then H (K, W) = Hy, (K, Way).

ProOF. The diagram (2) gives rise to a commutative diagram with exact rows

HY(K,T) —— H'(K,T) —— H'(K,Wy) —— H*(K,T)

I [ar | [ 3)
HY(K,T) —— H'K,V) —— H“(K,W) —— H(K,T).
It is immediate from this diagram and the definitions that the image of H}(K ,T)
is contained in H (K, Way).

Suppose cw,, € H}(K, War). Then the image of cy,, in H'(K,W) is the
image of some ¢y € H}(K, V). Thus (3) shows that cy,, is the image of some
er € HY(K,T), and the image of ¢z in H'(K, V) differs from cy by an element ¢/
of H'(K,T). Therefore ¢y — Mc' € Hi(K,T) and cp — Mc' maps to cw,,. This
shows that H}(K, W) is contained in the image of H} (K,T), and completes the
proof of (i).
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If ¢ # p and T is unramified then
HY(K, War) = image(H (K, T)) = image(H}, (K, T)) C HL (K, W)
by (i) and Lemma 3.5(iv). Similarly if ¢y is the map H'(K, Wy;) — HY(K, W)
then Lemma 3.5(iv) shows that
H(K, W) = o) (Hp(K, W) = o3 (Hy, (K, W) D Hy, (K, War)
which proves (ii). O
REMARK 3.9. We can view W), either as a subgroup of W or as a quotient of

T. Lemma 3.8(i) says that it makes no difference whether we define H (K, W)
as the inverse image of H}(K7 W) (as we did) or as image of H} (K,T).

COROLLARY 3.10. There are natural horizontal exact sequences and vertical
isomorphisms

0 —  H}EW) —  HY(K,W) —  HY{KEW) — 0

| I |
0 — lmH}K,Wy) — lmH'(K,Wy) — lmH(K Wy) — 0
M ’ M M

0 —  HNK,T) —  H\KT) —  H{KT) — 0

| I I
M M M

PRrROOF. The groups inside the inverse limits are finite (Proposition B.2.7(ii)),
so the horizontal exact sequences are clear.

The isomorphism H'(K, W) = lim H' (K, Wyy) is a basic fact from Galois co-
homology, and the isomorphism H (K, W) = lim H (K, W) follows immediately
from the definition of H}(K, Wps). The isomorphism HJ (K, W) = lim H} (K, W)
now follows.

The second set of isomorphisms is similar, except that to handle the inverse
limits we use Proposition B.2.3 for the center and Lemma 3.8(i) for the right. O

4. Local duality

Suppose that either K is a finite extension of Qg for some rational prime £ or
K =R or C, and T is a p-adic representation of G.

THEOREM 4.1 (Local duality). Suppose that either K is nonarchimedean and
i =0,1,2, or K is archimedean and v+ = 1. Then the cup product and the local
mwvariant map induce perfect pairings
HY(K,V) x H**Y(K,V*) — H%*(K,®(1)) — P
H{(K,Wy) x H**Y(K,Wj;,) — H?K,0(1)/MO(1)) — O/MO
H{(K,T) x H*Y(K,W*) — H?(K,D(1)) = D.
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PROOF. See for example [Mi] Corollary 1.2.3 or [Se2] §11.5.2 (and use Propo-
sitions B.2.3 and B.2.4). O

Without fear of confusion, we will denote all of the pairings of Theorem 4.1 by

<7 >K'

PROPOSITION 4.2. Suppose either K is archimedean, or K is nonarchimedean
of residue characteristic £ # p. Then H}(K, V) and H}(K, V*) are orthogonal
complements of each other under the pairing { , k.

ProoF. If K is archimedean then all the groups are zero, so there is nothing
to prove.
Suppose that K is nonarchimedean of residue characteristic £ # p. The pairing
(, )k H}(K,V)x H{(K,V*) — &

factors through H?(K" /K, ®(1)), which is 0 since Gal(K" /K) has cohomological
dimension 1. Thus H}(K7 V) and H} (K, V*) are orthogonal. Further, Corollary
3.3(i), local duality (Theorem 4.1), and Corollary 3.3(ii), respectively, give the three
equalities

dimg (H j(K,V*)) = dime (H° (K, V*)) = dime (H*(K, V))
= dimg(H' (K, V)) — dime (H} (K, V)),
S0 H} (K,V) and H} (K, V*) are exact orthogonal complements. O

ProOPOSITION 4.3. Suppose either

(a) K is archimedean,

(b) K is nonarchimedean of residue characteristic £ # p, or

(¢) K is nonarchimedean of residue characteristic ¢ = p and we choose subspaces
H}(K,V) and H}(K, V*) which are orthogonal complements of each other
under the pairing { , )

< ) /K-
Then under the pairings { , )k,
(i) H}(K, T) and H}(K, W*) are orthogonal complements of each other,
(ii) for every nonzero M in O, H(K,Wy) and H}(K, W) are orthogonal
complements of each other.

PROOF. The definition of the local pairings in terms of cup products shows
that the diagram
HYK, V) x HYK,V*) — &
‘| e |
HY(K,T) x HYK,W*) —— D.
“commutes”, in the sense that if c € H'(K,T) and d € H'(K,V*), then
<¢(C)7d>K = <Ca ¢*(d)>K e D.

By Proposition 4.2, H} (K, V) and H}(K, V*) are orthogonal complements of each
other in all cases. Thus if we write -+ to denote the orthogonal complement, then
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since H}(K, W*) = (;5*(H}(K7 V),
Hi(K, W' =¢ Y HH(K,V*)") =¢ " (H}(K,V)) = H}(K,T).
This proves (i), and the proof of (ii) is similar, using (i), the diagram
HYK,T) x HY(K,W*) —— D
HY (K, Wy) x HY(K,Wi,) —— O/MO
and Lemma 3.8(1). O

DEFINITION 4.4. If the residue characteristic £ of K is different from p, then
there is an exact sequence

0—>I’—>I—>Zp—>0

where 7’ has trivial pro-p-part (see [Fr| §8 Corollary 3). It follows that if M is a
power of p then 7 has a unique subgroup of index M (the inverse image of MZ,),
and by slight abuse of notation we denote this subgroup by ZM.

There is a natural action of Gal(K"/K) on the cyclic group Z/Z*. The next
lemma is essentially Exercice 2, §IV.2 of [Se3].

LEMMA 4.5. Suppose £ # p and M is a power of p. Then there is a canonical
isomorphism of Gal(K" /K )-modules

T/ =y,
Proor. We have isomorphisms
Hom(Z/TM, pyy) = Hom(Z, pupy) = (K)* /(K™ )M = Z/MZ,

given by Kummer theory and (on the right) by the valuation map (the unit group
of the ring of integers of K" is p-divisible). The inverse image of 1 under this
composition is the desired isomorphism.

More concretely, the isomorphism is given by

o — (Al/M)o/()\l/M)
where A is any uniformizing parameter of K. O

DEFINITION 4.6. If M € O is nonzero, we let M € ZT denote the smallest
power of p which is divisible by M.

LEMMA 4.7. Suppose the residue characteristic £ is different from p, T is un-
ramified, M € O s nonzero, and py; C K. Fiz a generator ¢ of py and let
oc € T)IM be the inverse image of ¢ under the isomorphism of Lemma 4.5.

(i) Pwaluating cocycles on Fr and o¢ induces isomorphisms
Hj(K, W) — Wy /(Fr = )Wy, HI(K Wy) — Wy=,

respectively.
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(ii) With an appropriate choice of sign on the right, the diagram
H}(K,W3) x H}(K,Wy) —— O/MO

! ! Jo
Wig/(Fr =)Wy x (W)™ —— 0(1)/MO(1)
commutes, where the first two vertical maps are the isomorphisms of (i),

the upper pairing is the paring of Theorem 4.1 and the lower pairing is the
natural one.

PROOF. The first assertion of (i) is just a restatement of Lemma 3.2(i), since
by Lemma 3.8(ii), H}(K, W) = HL.(K,Wp). Similarly, Lemma 3.2(ii) shows
that

HY(K, W) = H' (K, W) /Hy (K, Way) = HYZ, Wy )=
Lemma 4.5 shows that 7 /IM = pyr, and we have assumed that G acts trivially
on Wy, so we conclude that

HYK, W) = Hom(Z/ZM , Wy )™= = Hom (g, WE=1).

Our choice of generator of p,; now completes the proof of (i).
Assertion (ii) can be extracted Chapter I of [Mi], especially Proposition 0.14,
Examples 0.8 and 1.6, and Theorem 2.6. [

5. Global cohomology groups

Suppose for this section that K is a number field, T" is a p-adic representation
of G, and V and W are defined in terms of 7" as in §1. We assume in addition
that T is unramified outside a finite set of primes of K. (As usual, we say that T
is unramified at a place v if the inertia group of v acts trivially on 7'.) We write
K, for the completion of K at a place v, and for all primes v dividing p we fix a
subspace H}(K,,V) of H'(K,,V).

For every place v of K there is a canonical restriction map H'(K, -) —
HY(K,, -), which we will denote either by ¢+ res,(c) or simply ¢ c,.

If ¥ is a finite set of places of K we write Ky for the maximal extension of K
unramified outside 3.

DEFINITION 5.1. Suppose X is a finite set of places of K. We define some
Selmer groups corresponding to ¥ as follows. Recall that

H (K, W) = H' (K., W)/Hj(K,, W).
First, define
Ss(K,W) c S*(K,W) c HY(K,W)
by
SE(K, W) = ker(Hl(K W) — @@ H(K,, W)),
V¢S
Ss(K, W) = ker(SE(K, W) — @ H (K., W))

veEY
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(Note that ¢ € H(K,W) restricts to zero in all but finitely many H}(K,, W)
because T is ramified at only finitely many primes.) In other words, S¥(K, W)
consists of all classes ¢ € H' (K, W) satisfying the local conditions

o c, € HH(K, W)ifv¢X,
e 10 restriction for v € ¥,
and Sy (K, W) has the additional restrictions
e c,=0ifveX.
When ¥ = () is the empty set we write
S(K, W) =8"(K,W)=8y(K,W).
Similarly, we define Ss(K,T) C S¥(K,T) Cc HY(K,T) by
S2(K,T) = ker(H'(K,T) — ] HA(K,, 7)),
VS
Ss(K,T) = ker (SE(K, 7) - P H(K,, T))
veED
and likewise for Sg(K, W) € S*(K, War) C HY (K, Wyy) for every nonzero M in
0.

REMARK 5.2. If ¥ contains all primes above p, then the Selmer groups S* and
Sy, are independent of the choice of subspaces H }(KU, V) for v dividing p.

LEMMA 5.3. Suppose ¥ contains all infinite places, all primes above p, and all
primes of K where T is ramified. If A=T, W, or Wy with M € O, then

S¥(K,A) = H'(Kx /K, A).
PrOOF. By Lemmas 3.5(iv) and 3.8(ii), H}(KU,A) = H! (K,,A) for v ¢ 3,
so (writing Z, for an inertia group above v)
SE(K,A) = ker(Hl(K, A) — [[ Hom(z., A))
vES
- ker(Hl(K A) - Hl(Kg,A)) — HY(Ky/K,A). O
LEMMA 5.4. If M € O is nonzero and X is a finite set of primes of K, then
the natural map vpr » HY (K, W) — HY(K, W) induces a surjection
S¥(K, W) = S (K, W)u
PROOF. By Lemma 2.2(i), tp(HY (K, W) = HY(K, W) From the defini-

tion of H}(Kv, W) it is clear that 7, (ST (K, W)y) = S¥(K, War). This proves
the lemma. O

REMARK 5.5. Lemma 5.4 need not be true if we replace S* by Sy, because it
may not be the case that ¢y} (Ss (K, W)ar) C Ss(K, War).

PROPOSITION 5.6. Suppose X is a finite set of primes of K.
(i) S¥(K,T) = llrpSE(K, War) and Ss(K,T) = lim Sy (K, W),
M M

(i) SE(K, W) =1lim S*(K, War) and Su(K, W) = lim Sg.(K, Was).
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PrOOF. We have H'(K,W) = lim H'(K, W), and by Proposition B.2.3,
HY(K,T) = lim H'(K,W)). Corollary 3.10 shows that all the local conditions
behave well under inverse and direct limits, and the proposition follows. O

LEMMA 5.7. Suppose M € O is nonzero and X is a finite set of primes of K.
(i) SE(K,Wyy) is finite.
(i) S¥(K,T) is a finitely-generated O-module.
(iii) The Pontryagin dual of S*(K, W) is a finitely-generated O-module.
ProoF. Without loss of generality we may enlarge ¥ if necessary so that ¥
contains all infinite places, all primes above p, and all primes where T is ramified.
Then by Lemma 5.3, if A is Wy, T, or W we have S*(K, A) = H'(Ky /K, A). As
is well known (see Proposition B.2.7) these groups have the desired properties. [

6. Examples of Selmer groups

Again for this section K will denote a number field.

6.1. Ideal class groups I. Suppose O = Z, and T' = Z, with trivial G-
action. For every prime v of K not dividing p, Lemma 3.5(iv) shows that

H}(va Qy/Zy) = H&r(KTH Q,/Zy) = Hom(Gal(K,"/ K,), Qp/Zp).
If ¥ is a set of places of K containing all primes above p, it follows easily that

Hl(Kv Qp/Zp) = Hom(G, Q;D/Zp)7
S~ (K, Qp/Zy) = Hom(Gal(Kx/K), Qp/Zy),
Ss(K, Qp/Zp) = Hom(Gal(HKyz/K), Qp/zp)

where Hp 5, is the maximal everywhere-unramified abelian extension of K in which
all places in ¥ split completely. Thus by class field theory, writing Ag s for the
quotient of the ideal class group of K by the subgroup generated by the classes of
primes in X,

Sx (K, Qp/Zp) = Hom(Ag 5, Qp/Zp).
With an appropriate choice of H }(Kv, Q) for primes v dividing p, Proposition 6.1
below will show that

S(K,Qp/Zy) = Hom(Ak, Qp/Zy) (4)

where A is the ideal class group of K.

6.2. Ideal class groups II. More generally, suppose that y : Gxg — O* is
a character of finite, prime-to-p, order, and let 7' = O,, a free rank-one O-module
with G acting via x. Let L be an abelian extension of K of degree prime to p such
that x factors through A = Gal(L/K). Write D, =D ® O, and &, = ®® O,,.

Suppose v is a place of K, and if w is a place of L above v let D,, and Z,,
denote a decomposition group and inertia group of w, respectively, in Gg. The
restriction map gives isomorphisms (Corollary B.5.3(ii))

HY(K,,V) 2 (&,,Hom(Dy, V))* = (&,,Hom(D,, ®,))* (5)
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and if v { p this identifies
Hi(K,,V) = H\(K,,V) = (&,),Hom(D, /L, V) (6)

If v | p we take (6) as the definition of H}(K,,V) as well; this agrees with the
Bloch-Kato definition of H} in this case.

Let Ay, denote the ideal class group of L. When L = K the following proposi-
tion reduces to (4).

PROPOSITION 6.1. S(K, W) = Hom(A,D,)*

PROOF. Since [L : K] is prime to p, the restriction map
HY(K,W) — H*(L,W)* = Hom(G,D,)*
is an isomorphism. Exactly as in (5) and (6), for every v
HY K, W) —— (B pHom(D,,, W))A
U U
H}“(KU’ w) — (@wlv(Hom(Dw/Iwa W))A)div'
Since each Dy, /Z,, is torsion-free, @,,),Hom(D.,, /T, W) is divisible. Since A has
order prime to p,
(®w\vH0m(Dw/va W))A = <|A|_1 Z 5) (@wthom(Dw/Z’wa W))
SEA
is divisible and so H}(Kv, W) = (®yjyHom(Dy /Ly, W))?. Therefore, if Hy is the
Hilbert class field of L,
S(K, W) = {¢ € Hom(G,D,)* : ¢(Z,,) = 0 for every w}
= Hom(Gal(Hy/L),D,)* = Hom(Ap, D, )", O
6.3. Global units and ideal class groups. Let x, T' = O,, L, Az, and
A = Gal(L/K) be as in §6.2. Then T* = Oy-1.__, i.e., T" is a free rank-one O

module on which Gk acts via X’lscyc, where €.y denotes the cyclotomic character.
In particular G, acts on T™ by the cyclotomic character.

DEFINITION 6.2. Suppose B is a Z[A]-module. We define the p-adic completion
of B to be the double dual

B® = Hom(Hom(B, Q,/Z,),Qp/Z,)

(with continuous homomorphisms, when B comes with a topology). For example,
if B is a Z,-module then B" = B; if B is a finitely generated abelian group then
B" = B ®zZ,. In general B" is a Z, module and there is a canonical map from B
to B".
Define the x-component of B
BX = {be€ B"®z, O :vb= x(7)b for every v € A}

We fix once and for all an O-generator of O, -1, and with this choice we get an
isomorphism
BX = (B ®0y-1)"~.
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Since [L : K] is prime to p, taking x-components is an exact functor and
B ®z, O = &, BX.

Suppose v is a place of K, and let Uy, denote the local units of L ® K, =
Hw‘v Ly. (That is, U, = lev O where O, is the ring of integers of L,,.)
The restriction map (Corollary B.5.3(ii)) and Kummer theory (Example 2.1) give
isomorphisms

HY(Ky, V) 2= (@), H' (Lo, V*))2
= (@upH (L, Qp(1)) ® By-1) = (L® K,))¥ @ .
If v t p then with this identification one can check that
HY (K, V*) —— (LK) )X@®
U U (7)
HNK,,V*) —"— Uy, ®0.
If v | p we take the bottom row of (7) as the definition of H} (K,,V*) as well; this

agrees with the Bloch-Kato definition of H} in this case. Combining (5) and (6)
with the identifications

EBw\va = (L ® Kv)xa EBw\vIw = UL,v
of local class field theory gives a similar diagram
HY(K,,V) ——  Hom(((L ® K,)*)X, ®)
U U (8)
H}(K,,V) —— Hom(((L ® K,)*)X/U} ,, ®).

The local pairing ( , ), is the natural one induced by the identifications of (7) and
(8), and so H(K,,V*) and H}(K,,V) are orthogonal complements.
Let Op, denote the ring of integers of L.

PROPOSITION 6.3. (i) There is a natural isomorphism
HY (K, W*) = (L* @ Q,/Zp)X.
(ii) There is an exact sequence
0 — (OF ® Qp/Zy)X — S(K,W*) — AX — 0.
PROOF. Since [L : K] is prime to p, the restriction map
HY(K,W*) HY(L,W*)2 = (H' (L, pyo) ® Oy-1)2
= H (L, ppee )X = (L © Qp/Zp)X.

is an isomorphism, which gives (i). It follows easily from (7) that for every v there

resr /K
_—

is an isomorphism, compatible with (i),
H} (K, W*) =5 UY, © Qp/Z,.
Therefore if we define

Xp={y®p™"eL*®Qy/Z,: ord,(y) =0 (mod p") for every place w of L},
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then
resp i (S(K,W*)) = X},
Suppose & € X, is represented by y ® p~" with y € L*. Then the principal
fractional ideal yOy, is of the form a?” for some fractional ideal a. This map = — a

induces a well defined surjection from X, to the p-part A(Lp) of the ideal class group
of L. Thus there is an exact sequence

O—>OZ®QP/ZP—>XL—>A(LP)—>O,

and taking y-components gives the exact sequence of the proposition. O

Let X, denote the set of primes of K above p.
COROLLARY 6.4. If Leopoldt’s conjecture holds for L then Ss,, (K, W*) is finite.

PROOF. Leopoldt’s conjecture for L is the assertion that the p-adic completion
of O injects into (L ® Q,)*. This implies that the map

(OZ & Qp/Zp)X — (L ® QP)X ® QP/ZP)X = 69’UI]DHl(Kva W)

has finite kernel, so the corollary follows from Proposition 6.3(ii) and the finiteness
of the ideal class group. O

COROLLARY 6.5. With notation as above, suppose that K = Q. If x is odd
(i.e., x sends complex conjugation to —1) then S(Q, W*) = A¥.

PROOF. Since x is odd, (OF )X is finite and so (O] ® Q,/Z,)X = 0. Thus the
corollary follows immediately from Proposition 6.3(ii). O

6.4. Abelian varieties. Let A be an abelian variety defined over K and T' =
T,(A) the p-adic Tate module of A as in Example 1.5. (See for example [Si] for the
basic facts in the special case of elliptic curves.) Then

V=V(A) = T(A) QW =Vy(A)/Ty(A) = Ay,

where A, is the p-power torsion in A(K).
For every place v of K there is a natural injective Kummer map

A(K,) Xz, Qp — Hl(Kva Vu(A)) 9)

where A(K,)" denotes the p-adic completion of A(K,). If v is a prime of K above
p we define H }(Kv, Vp(A)) to be the image of this map. This definition agrees with
the Bloch-Kato definition of Hj.

REMARK 6.6. Let A* denote the dual abelian variety of A. Then V,(A4)* =
Vp(A*), and if we define the H}(KU, Vp(A*)) in the same way then H}(Kv, Vp(A4))
and H}(K,, V,(A*)) are orthogonal complements of each other under the local
pairing { , )k,

Note that if we fix a polarization of A, then the Weil pairing gives an iso-
morphism V,(A*) = V,(A), and this isomorphism identifies H}(K,,V,(A)) and
HY(K,. Vy(A)).



7. GLOBAL DUALITY 17

PROPOSITION 6.7. The Selmer group S(K, Ape) is the usual p-power Selmer
group attached to the abelian variety A, sitting in an exact sequence

0— AK)® Qp/zp — S(K, Ap"o) - ]-H(A/K)p‘” —0
where I(A /i )p~ denotes the p-part of the Tate-Shafarevich group of A over K.

PROOF. Suppose v 1 p. If £ is the rational prime below p, then A(K,) has a
subgroup of finite index which is a pro-¢ group, so the p-adic completion A(K,)"
is finite. Also in this case H}(K,,V,(A)) = 0 by Corollary 3.3(i) and Remark 3.7.
Therefore for every v (including those above p), H }(KU, Vp(A)) is the image of the
map (9). Tt follows that for every v, H}(K,, Ap<) is the image of A(K,)" ® Q,/Z,
under the corresponding Kummer map, and so the definition of S(K, A, ) coincides
with the classical definition of the Selmer group of A. O

7. Global duality

As in §5 we suppose that K is a number field and T is a p-adic representation
of Gk ramified at only finitely many primes of K. For all primes v dividing p we
also fix special subspaces H}(KU, V) c HY(K,,V) and Hi(K,,V*) C HY(K,,V*)
which are orthogonal complements under the pairing ( , )i, of Theorem 4.1. We
will also denote this pairing by (, ),

REMARK 7.1. If the representation V is potentially semistable (see [FPR] §1.2)
at a place v dividing p, then the Bloch-Kato subspaces H} (K,,V) and H} (K,, V™)
are orthogonal complements (see [FPR] Proposition 1.3.3.9(iii) or [BK] Proposition
3.8).

DEFINITION 7.2. If ¥y C X are finite sets of places of K we will write

locy : HYK,Wy) — @Hl(KmWM)

vEX

locy, : SE(K,Wy) — P HI(K,Wu)
vEX—%)

locf g, 0 Su,(K,Wa) — €D Hj(Ky, W)
vEX -3

for the respective localization maps.

THEOREM 7.3 (Poitou-Tate duality). Suppose M € O is nonzero and ¥g C X
are finite sets of places of K.
(i) There are exact sequences
locs,
0 — 8% (K, War) — SZ(K, W) —=% @ HN K., W),
vEX—Y)

locé S0 1
0 — Su(K, Wiy) — Sx,(K.Wip) —— D Hj(K., Wi).
vEX—Y
(ii) The images locs, 5, (S*(K, War)) and locgEO (Ss, (K, W}3,)) are orthogonal
complements of each other with respect to the pairing 3, cx 5, (5 )o-
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(iii) There is an isomorphism
Sy, (K, W3;)/Ss (K, Wy) — Homop (coker(locs; 5 ), O/MO).

PROOF. Assertion (i) is immediate from the definitions of the Selmer groups
involved.

For (ii), recall that by Theorem 4.1 and Proposition 4.3(ii), { , ), induces a non-
degenerate pairing on H{ (K., Was) x H}(K,, W3;). Suppose first that 3 contains
all infinite places, all primes above p, and all primes where T is ramified, so that
SE(K, W) = HY(Ks/K, W) and SE(K,W3,) = H'(Ks/K,W};) by Lemma
5.3. Under these conditions, a part of the Poitou-Tate duality exact sequence ([Mi]
Theorem 1.4.10 or [T1] Theorem 3.1) gives

SZ(K, WM) E) @ HI(KM WM) locy:
VEX

S¥(K,Wip)” (10)

where S*(K,W;3,)V = Hom(S¥(K,W};),0/MO) and the maps are induced by
localization and the local pairings between H'(K,, W) and H*(K,, W};). Using
Proposition 4.3(ii), we can combine (10) and (i) to produce a new exact sequence

locs
3,520

0 — S¥(K, Wy) — S¥(K, Wy) ——> @ HUK,, W)
vEX - (]_1)

f \4
loczv20

— Sy (K, W;)Y — Ss(K,W;;)Y — 0.

The exactness in the center proves (ii) in this case. (To see the exactness in the
center, note that the dual of the tautological exact sequence

0 — Sx, (K, W;;) — S¥(K,W3)
1 ®locs,
DT @y HY (K W) @D HL(K,, W)
vEXQ vEX—Y
is
P B (K, Wn) @ Hp(EK, W)
vEX) vEX X,

(IOCEO @10c%720 )Y
(el SN

SE(K, WiV — Ss, (K, W;;)V — 0.

Splicing this together with (10) and

0— P H' (K. Wun) P H}K,, W)

vEXg vEX -3
— @PH (K, Wy) — P HIKy,Wu) —0
VED vEL -5

gives (11).)
Now suppose X is arbitrary, and let ¥’ be a finite set of places containing X,
all infinite places, all primes above p, and all primes where T is ramified. Then the
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argument above applies to the pairs ¥ C ¥’ and to Xy C X', so we have a diagram
0 0

S¥(K, W) /S® (K, Wy) ——  S¥(K, W) /S®(K, War)

locg
=/, 59

@vez'fon;(KvaWM) - @ueZ'szsl(Kv’WM)

s
10C2’,2

(locf, 5 )" (locf, )

(Sxo (K, Wip) /S (K, Wip))Y ——— (Su(K, Wi) /S (K, Wi))”

0 0
with surjective horizontal maps. The Snake Lemma gives an exact sequence of
kernels of the horizontal maps

locs
5,50

0 *)SE(K, WM)/SZO(Ka WM) ’ @UGE—EOHSI(KMWM)

(locé,z)v

———— (S, (K, Wiy)/Ss (K, W) — 0

and the exactness in the center proves (ii) for ¥y C X. Assertion (iii) is just a
restatement of (ii). O

REMARK 7.4. Theorem 7.3 will be applied with ¥y equal to the empty set or
the set of primes dividing p, and with ¥ large enough so that Sy,(K,W;;) = 0. In
that situation, it follows from Theorem 7.3(iii) that

| S5 (K, Wiy)| = |coker(locs; 55, ).

Thus if one can produce “enough” cohomology classes in S*(K, Wj;), one obtains
a good bound on the size of Sy, (K, W};). The purpose of an Euler system is to
construct these classes.

Recall that ¥,, denotes the set of primes of K above p.
COROLLARY 7.5. There is an isomorphism
S(K,W*)/Ss, (K,W*) — Homp (coker(locs; ), D)
where locs; is the localization map ST (K, T) — L, HMK,,T).

PrOOF. We apply Theorem 7.3(iii) with ¥ = ¥, and with £y equal to the
empty set, and take the direct limit over M to obtain

lim S(K, Wy;)/Ss, (K, Wy;) = lim Homo (coker(locs; | ), O/MO).
M M

where locg; 5, is the localization map S¥ (K, Wy1) — @ypHH(Ky,War). By
Proposition 5.6(ii),

lim S(K, Wiy)/Ss, (K, Wiy) = S(K, W*)/Ss, (K, W*).
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By Proposition 5.6(i),
lj_rpSEP(K7 WM) = Szp (K? T)7

M

and by Corollary 3.10,
i @, H (K, War) = ®yp HY (K, T).
M

Since all the groups S*» (K, Wy) and HL(K,, W) are finite (Proposition B.2.7(ii)
and Lemma 5.7), it follows (Proposition B.1.1) that

lim Homo (coker(locs; | 5/), O/MO) = Home (lim coker(locs, ,/), D)
M M

and that
lim coker(locs, ,/) = coker(locs, ).
M

This completes the proof. O



CHAPTER II
Euler systems: definition and main results

In this chapter we state our main results. The definition of an Euler system
is given in §1, and the theorems applying Euler systems to study Selmer groups
over number fields and over Zg—extensions of number fields are given in §2 and §3,
respectively. Examples and applications are given in Chapter III; the reader might
benefit from following along in those examples while reading this chapter. The
proofs, using tools to be developed in Chapter IV, will be given in Chapters V and
VII. In Chapter IX we discuss some variants and extensions of the definition of
Euler system given below.

For similar results see the papers of Kato [Ka2] and Perrin-Riou [PR5].

For a first reading, one might want to restrict below to the case K = Q (so that
the group of global units O is finite) and O = Z,,. This simplifies the notation,
while all the main ideas still appear.

1. Euler systems

Fix a number field K, and let Ok denote the ring of integers of K. Fix also
a rational prime p and a p-adic representation T' of Gx as in Chapter I §1, with
coefficients in the ring of integers O of some finite extension ® of Q,. We assume
in addition, as in Chapter I §5, that T is unramified outside a finite set of primes
of K.

For every prime q of K not dividing p where T is unramified, let K (q) denote
the maximal p-extension of K inside the ray class field of K modulo g, let Frq
denote a Frobenius of q in Gk, and define

P(Frq_1|T*; x) =det(l — Frq_lzv|T*) € Olz]

(the determinant is well-defined because T* is unramified at ¢).
We will write
KCF

to indicate that F is a finite extension of K.

DEFINITION 1.1. Suppose K is an (infinite) abelian extension of K and N is
an ideal of K divisible by p and by all primes where T is ramified, such that

(i) K contains K(q) for every prime q of K not dividing NV,
(ii) K contains an extension Ko, of K such that
Gal(Koo/K) =2 Z¢ for some d > 1,
no (finite) prime of K splits completely in K /K.

21
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A collection of cohomology classes
c={cp e H(F,T): KC,F C K}
is an Euler system for (T, K,N) if, whenever K C, FC, F' C K,

Corpr/p(cpr) = ( H P(Frq_1|T*;Frq_1)> cr
qEX(F'/F)

where X(F'/F) is the set of (finite) primes of K, not dividing A, which ramify in
F’ but not in F.

We say a collection ¢ = {cp € H'(F,T)} is an Euler system for T if ¢ is an
Euler system for (7', K, ) for some choice of A" and K as above.

If Kisa Zg—extension of K in which no finite prime splits completely, we say
a collection ¢ = {cr € H*(F,T)} is an Euler system for (T, K..) if ¢ is an Euler
system for (T, K, N') for some choice of N and K containing K, as above.

REMARK 1.2. The condition that no finite prime splits completely in K., /K
is satisfied, for example, if K, contains the cyclotomic Z,-extension of K.

In general, since Zg has no proper finite subgroups, to say that a prime does
not split completely in K., /K is equivalent to saying that its decomposition group
is infinite. See Chapter IX §2 for additional remarks about this assumption.

Note that since we require N to be divisible by p, no Euler factors at primes
dividing p enter our picture. It follows from our definition that the Euler system
classes are “universal norms” in the K., /K direction, i.e., if K, FC F' C F' K,
then X(F'/F) is empty so

Corp//p(crr) = cp.

On the other hand, one might want to include Euler factors for primes where T
is ramified. One could easily modify the definition above to take such Euler factors
into account. Alternatively, one can choose an ideal A/ prime to p, replace K by
the maximal extension K’ of K in K which is unramified at the primes dividing
N, and replace N' by NN’. Then the Euler factors at primes dividing A" become
irrelevant, and no information has been lost when we apply the theorems below
(since the conclusions are independent of K and N).

REMARK 1.3. If m is a generalized ideal of K (i.e., m can be divisible by
archimedean places as well as prime ideals) let K[m] denote the ray class field
of K modulo m. Given K and N as in the definition above, an Euler system for
(T, K, N) is equivalent to a collection {¢,, € H*(K[m|NK,T) : every m} satisfying

P(Fr T Fryem  if gt mA
Cm if g | mM.

For, given such a collection, if F' is any subfield of I, then we can define

Cor g [ma)nk /K [m]nk (€mg) = {

cr = Corgmjnic/F(Em)

where m is the conductor of F'/K. One checks easily that the collection {cp} is an
Euler system. Conversely, given an Euler system {cp} we can define

Cm = H P(Fr T Fry ) expmynk
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where the product is over primes dividing m, not dividing N, which are unramified
in (K[m]NK)/K.

REMARK 1.4. Suppose now that we are given N and K, /K as in Definition
1.1. If v = qy - - q& is a product of distinct primes not dividing N, then we define
K(t) to be the compositum

K(v) = K(a1) - K(ax)-

and if KC, F C K we let F(vr) = FK(r). Let K be the compositum of K
and all K(q) for primes q not dividing A". Thus K, is the smallest extension of K
satisfying the conditions of Definition 1.1 for A" and K, /K. Every finite extension
of K in Ky, is contained in F(r) for some squarefree ideal t prime to A/ and some
K C,F C Kw. It follows easily that an Euler system for (T, Kin, N) is completely
determined by the subcollection

{cp(v) : v is squarefree and prime to N, K C, F C Koo}

Conversely, suppose we are given a collection {cp ()} such that if K C, F'C, F' C
K, tis a squarefree ideal of K prime to A/, and q is a prime of K not dividing
tN such that K(q) # K, then

Corp(eq)/p(e) (CF(en) = P T Frg Hep(),

Corpr(vy/p() (Crrr) =€
(Note that if K(q) = K then F(vq) = F(r).) Then this collection determines an
Euler system: if K C,L C Kyn then we can set

()

cr, = Corp(ey/n(cr(r))

where v and F' are minimal such that L C F(r). Thus we may view an Euler system
for (T, Kunin, V) as such a collection {cp(y)}.

REMARK 1.5. Kolyvagin’s original method (see [Ko2] or [Ru3]) required the
Euler system to satisfy an additional “congruence” condition. By expanding on an
idea from [Ru6], using our assumption that K contains K., (i.e., that our Euler
system extends “in the p-direction”), we will be able to bypass the need for the
congruence condition. In fact, the congruence condition follows easily from the
techniques we will use in Chapter IV, and although we do not need it, we will state
and prove it in Chapter IV §8 (Corollary IV.8.1).

On the other hand, if we assume that our Euler system classes satisfy ap-
propriate congruence conditions then we can remove from Definition 1.1(ii) the
assumption that I contains K., so we need not have classes that are “universal
norms”. See Chapter IX for a discussion of this and other possible variations in the
definition of an Euler system.

2. Results over K

We now come to the fundamental application of Euler systems: using the “de-
rivative” classes associated to an Euler system (see Chapter IV §4) and the duality
theorems from Galois cohomology stated in Chapter I §7 to bound the order of a
Selmer group (Theorems 2.2, 2.3, and 2.10).
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Let p be the maximal ideal of O and k = O/p the residue field. Let K (1) be
the maximal p-extension of K inside the Hilbert class field of K. We will make
use of two different sets of hypotheses on the Galois representation T'. Hypotheses
Hyp(K,T) are stronger than Hyp(K,V), and will allow us to prove a stronger
conclusion.

HypOTHESES Hyp(K,T).
(i) There is a 7 € G such that
e 7 acts trivially on p,, on (OF)Y/P™ and on K(1),
e T/(t — 1)T is free of rank one over O.
(ii) T ® k is an irreducible k[Gk]-module.

HypoTHESES Hyp(K,V).
(i) There is a 7 € Gg such that
e 7 acts trivially on p,, on (OF)YP™ and on K(1),
o dimg(V/(t —1)V)=1.
(ii) V is an irreducible ®[G g]-module.

DEFINITION 2.1. If ¢ is an Euler system, we define the index of divisibility of

c to be
indp(c) =sup{n:cx € p"H (K, T) + H' (K, T)tors} < 00,

i.e., pndo(©) i the largest power of the maximal ideal by which cx can be divided
in HY(K,T)/HY (K, T)tors-

Write £o(B) for the length of an O-module B, so that |B| = Uk|ZO(B). We allow

Define Q = K(1)K(W)K (ptye (OF)YP™) where K (W) denotes the smallest
extension of K such that Gk acts trivially on W.

Let X, denote the set of primes of K above p.

THEOREM 2.2. Suppose that p > 2 and that T satisfies Hyp(K,T). If c is an
FEuler system for T’ then
Lo(Sx, (K, W7)) <indo(c) + nw + njy,
where
ny = Lo(HY(Q/K,W)NS¥ (K,W))
njy = lo(H' (Q/K,W*) NS, (K, W*))

THEOREM 2.3. Suppose that V satisfies Hyp(K, V) and T is not the one-dimen-

sional trivial representation. If ¢ is an Euler system for T and cx ¢ HY (K, T )tors,
then Ss, (K, W*) is finite.

Note that Theorem 2.3 holds even if p = 2.
REMARK 2.4. Hypotheses Hyp(K,T) are satisfied if the image of the Galois
representation on T is “sufficiently large”. They often hold in practice; see the

discussion of the examples in the next chapter. If ranke(7) = 1, then (i) holds
with 7 = 1, and (ii) holds as well.
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REMARK 2.5. Corollary C.2.2 shows that if V' is an irreducible ®[Gx]-module,
then H'(Q/K, W) is finite (resp. H*(Q/K,W*) is finite) unless 7' = O with trivial
action (resp. T = O(1)). Frequently the “error terms” ny and nj;, in Theorem 2.2
are zero; see the examples in Chapter III.

REMARK 2.6. Hypothesis Hyp(K,T')(i) is used to guarantee the existence of a
supply of primes ¢ of K such that H}(K(qLWM) and H!(K(q), W},) are free of
rank one over O/MQ©. This in turn makes it possible to use Theorem 1.7, along
with the cohomology classes we will construct from the Euler system in Chapter
IV, to bound the Selmer group as in Theorem 2.2.

REMARK 2.7. In the exceptional case T' = O of Theorem 2.3, Sy (K, W*) is
finite if and only if Leopoldt’s conjecture holds for K. See Corollary 1.6.4.

REMARK 2.8. There is always a trivial Euler system defined by cp() = 0 for
all F' and v. But in that case indp(c) = 0o so Theorems 2.2 and 2.3 say nothing.

REMARK 2.9. Theorem 2.2 gives a bound for the size of Sy, (K, W*), not the
true Selmer group S(K, W*). Since we have put no local conditions at p either on
our representation 7' or our Euler system c, that restricted Selmer group is all that
the Euler system can “see”. Combining the global duality results from Chapter I
§7 with Theorems 2.2 and 2.3 gives Theorem 2.10 below concerning S(K, W*).

Suppose that for every prime v dividing p we have subspaces H}(KU,V) C
H'(K,,V) and H}(K,,V*) C H'(K,,V*) which are orthogonal complements un-
der the pairing ( , )k, as in Chapter I §7. We write

HYKp, ) = @y, H' (Ky, -)
and similarly for H; and H; = H'/H}, and let
locy;, : 8™ (K, T) — H}(Kp,T)
be the localization map as in Corollary 1.7.5.

By Corollary B.3.4 (see also Proposition IV.6.1) and Lemma 1.3.5(ii), if ¢ is an
Euler system then cx € S¥¢(K,T).

THEOREM 2.10. Suppose c is an Euler system for T and locs; (cr) # 0.

(i) IfT is not the one-dimensional trivial representation, V satisfies Hyp(K, V),
and [HY(K,,T) : Olocs; (ck)| is finite, then S(K,W™) is finite.

(if) Suppose that p > 2 and T satisfies Hyp(K,T). Let ny and njy, be as in
Theorem 2.2. Then

lo(S(K,W*)) < lo(H, (K,,T)/Olocs, (cx)) + nw + njy.

PrOOF. We will use Theorems 2.2 and 2.3 to bound Sz, (K, W*), and Corollary
1.7.5 to bound [S(K,W*) : Sg, (K, W*)].

For every v, H}(K,,T) is torsion-free since by definition it injects into the
vector space H!(K,,V). Hence if locs; (cxk) is not zero then cx ¢ HY(K,T)tors-
Now Theorem 2.3 shows that Sx (K, W*) is finite, and Corollary 1.7.5 shows that

[S(K,W*) : Sg, (K, W™)] = [H; (K, T) : Olocs, (77 (K, T))] (1)
< [H{(Kp,T) : Olocs; (ck)].
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This proves (i).
The definition of S*»(K,T) gives an injective map

HY(K,T)/S* (K,T) — ®,p,HL(K,,T),

so HY(K,T)/S*r(K,T) is torsion-free. It follows that for every n,

cx €p"HYK,T) + H (K, T)iors = cx €p"S™ (K, T) + H (K, T)tors

= loc§, (ck) € p"locs, (8% (K, T)).
Therefore if loc3; (cx) # 0 then
indo(c) < lo(locs; (S*r (K, 1))/Olocs, (ck)),
and so Theorem 2.2 shows that
lo(Ss, (K, W) < lo(locs, (8™ (K,T))/Olocs, (ck)) + nw + njy-

Together with the equality (1) of Corollary 1.7.5, this proves (ii). O

REMARK 2.11. Note that, although a full Euler system is required to prove
Theorems 2.2, 2.3, and 2.10, only the class cx appears in the statements of those
theorems.

REMARK 2.12. The choice of subspace H} (Kp,V) intervenes on both sides of
the inequality of Theorem 2.10.

REMARK 2.13. One would like a bound for the order of S(X, W*) which in-
volves a value of an appropriate L-function. However, Theorems 2.2 and 2.10 are
purely algebraic and never “see” special values of L-functions. One hopes that (as
in the examples of Chapter III) these L-values will arise as locs; (ck) for some
Euler system ¢, and thereby come into the bound for the order of S(K,W™*) via
Theorem 2.10. See Chapter VIII for a discussion of a general framework in which
one expects Euler systems which are related to L-values.

3. Results over K

Fix for this section an abelian extension Ko of K such that Gal(K/K) = Z2
for some d and such that no finite prime of K splits completely in K.

Essentially by proving analogues of Theorem 2.2 for each field F', K C, F C Ko,
we can pass to the limit and prove an Iwasawa-theoretic version of Theorem 2.2.
See [Lan| Chapter 5 or [Wa] Chapter 13 for basic background on Iwasawa theory,
or [Sel] for the more general situation of Z%-extensions with d > 1.

NoTATION. If KC, F C Koo, we will write Ap = O[Gal(F/K)]. Let I' =
Gal(K/K) and let A denote the Iwasawa algebra
A=0[I]= lim Ap,
K Cf FCKoo
so A is (noncanonically) isomorphic to a power series ring over O in d variables,
and let M denote the maximal ideal of A.
We say that a A-module B is pseudo-null if B is annihilated by an ideal of
A of height at least two. A pseudo-isomorphism is a A-module homomorphism
with pseudo-null kernel and cokernel, and two A-modules are pseudo-isomorphic if
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there is a pseudo-isomorphism between them. If B is a finitely generated torsion
A-module then there is an injective pseudo-isomorphism

@ A/fihk — B
with f; € A, and we define the characteristic ideal of B
char(B) = HfiA.

The characteristic ideal is well-defined, although the individual f; are not. The
individual ideals (elementary divisors) f;A are uniquely determined if we add the
extra requirement that f;11 | f; for every i. If B is a finitely-generated A-module
which is not torsion, we define char(B) = 0. If

0—B —B—B"—0
is an exact sequence of finitely-generated A-modules, then
char(B) = char(B’)char(B").

We will need the following weak assumption to rule out some very special bad
cases. In particular it is satisfied if K = Q.

HyprotHEsIS Hyp(K/K). If rankz (I') =1 and Gx_, acts either trivially or
by the cyclotomic character on V', then either K is a totally real field and Leopoldt’s
conjecture holds for K (i.e., the p-adic completion of O injects into (Ox ® Z,,)™),
or K is an imaginary quadratic field.

We also write Hyp(K o, T') (resp. Hyp(K o, V')) for hypotheses Hyp (K, T') (resp.
Hyp(K,V)) with Gk replaced by Gx__:

HypOTHESES Hyp(K,T).

(i) There is a 7 € Gk, such that
e 7 acts trivially on p,, on (OF)YP™ | and on K(1),
e T/(t — 1)T is free of rank one over O.

(ii) T ® k is an irreducible k[Gk__]-module.

HyPOTHESES Hyp(K,V).

(i) Thereis a 7 € Gk, such that
e 7 acts trivially on p,, on ((’)Ix()l/poo, and on K(1),
o dimg(V/(r —1)V) = 1.

(ii) V is an irreducible ®[Gk_ ]-module.

There are simple implications
Hyp(Ko,T) = Hyp(Ks,V)

I (3
Hyp(K,T) = Hyp(K,V).
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DEFINITION 3.1. Recall that D = ®/O. Define A-modules
Sy, (Koo, W*) = lim Sy, (F,W")
K Cf FCKoo
Xoo = Homp(Sy, (K, W*),D)
HY(K,T)= lim HY(FT),
K Cf FCKoo
limits with respect to restriction and corestriction maps, respectively. If ¢ is an

Euler system let cx oo = {crlrc, rck. denote the corresponding element of
H! (K,T) and define an ideal

inda(c) = {¢(cr.00) : ¢ € Homp (HL (K, T),A)} C A.

The ideal inda(c) is the analogue for A of the index of divisibility indp(c) of
Definition 2.1.

Recall that c is an Euler system for (T, K,) if it is an Euler system for (T, K, )
with K C K.

THEOREM 3.2. Suppose ¢ is an FEuler system for (T,Ks), and V satisfies
Hyp(Kwoo, V). If cx.0o does not belong to the A-torsion submodule of H (K, T)
then X 1s a torsion A-module.

THEOREM 3.3. Suppose c¢ is an Euler system for (T, K), and T satisfies hy-
potheses Hyp(Koo, T) and Hyp(K/K). Then

char(Xs) divides indx(c).

THEOREM 3.4. Suppose ¢ is an Euler system for (T, K ), and V satisfies hy-
potheses Hyp(K oo, V) and Hyp(K o /K). Then there is a nonnegative integert such
that

char(X,,) divides p'inda(c).

REMARK 3.5. The assertion that X is a torsion A-module is called the weak
Leopoldt conjecture for T. See [Gr2] or [PR4] §1.3 and Appendice B.

REMARK 3.6. As with Theorem 2.2, these three theorems all give bounds for
the size of Sx, (Koo, W) rather than the true Selmer group lim S(F, W*). Combin-
ing these results with the global duality results from Chapter I §7 gives Theorem
3.8 below concerning the true Selmer group.

Suppose that for every K C, F' C K, and every prime w dividing p we have
subspaces H}(F,,V) C H'(Fy,V) and H}(F,,V*) C H'(F,,V*) which are or-
thogonal complements under the pairing (, ), , as in Chapter I §7. We suppose
further that if FF C F’ and v’ | w then

Corprp, Hj(Fyy, V) C Hp(Fy, V),
ReSE;//FwH}(Fw7V*) C H}(FLJHV*)

(In fact, the local pairing and our assumptions about orthogonality show that these
two inclusions are equivalent.) These conditions ensure that, if K C, F C, F' C K,
the natural restriction and corestriction maps induce maps

S(F,W*) — S(F',\W*), H(F,,T) — H,(F,T)
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where we write
Hl(va : ) = EBwIpZ;Il(Eu» : )
and similarly for H; and H; = H'/H}. Define
S(KomW*) = lllll 'S(F> W*)a
K Cy FCKoo
H;O,S(KIHT) = I}_Ip Hel(FpaT)
K Cf FCKoo
PRrROPOSITION 3.7. There is an exact sequence
0 — Hi ((Kp,T)/locs, (Hi(K,T)) — Homo(S(Keo, W*), D) — Xoo — 0.
where 1oc§p cHY (K, T) — Héqs(Kp,T) is the localization map.
Proor. By Corollary B.3.4,

HYL(K,T)= lim S (F,T).

K Cp FCKoo

Thus the proposition follows from Corollary 1.7.5 by passing to the (direct) limit
and applying Homp (-, D). O

THEOREM 3.8. Suppose ¢ is an Euler system for (T, K), and V satisfies hy-
potheses Hyp(Keo, V) and Hyp(Koo/K). Iflocs, (Ck o0) ¢ H (Kp,T)A—tors and
H;O,S(KP,T)/AIOCSZP (cKk,00) 18 a torsion A-module, then Homp(S(Koo, W), D) is
a torsion A-module and

(i) there is a nonnegative integer t such that

char(Homo (S(Koo, W*), D)) divides p'char(H}, ,(K,, T)/Alocs; (ck,)),
(ii) of T satisfies Hyp(K oo, T) then

char(Homo (S(Ks, W*), D)) divides char(HéqS(Kp, T)/Alocs; (cr,o0))-

PROOF. Since locszp(cK,oo) ¢ H;O’S(KP,T)A,torS, Ckoo & HL(K,T)A—tors-
Therefore Theorem 3.2 shows that X, is a torsion A module, and then Propo-
sition 3.7 shows that Home (S(K o, W*), D) is a torsion A-module and that

char(Homp (S(K o, W*), D)) = char(Xoo)char(H;o,S(Kp, T)/locs;, (HL (K,T))).

Our assumptions ensure that locs, (H, L (K,T))is arank-one A-module, so there
is a map ¢ : locg; (H. (K,T)) — A with pseudo-null cokernel. Then

W (locs, (cx,00))A = char(¥(locs; (Hoo (K, T))) /¥ (locs; (Cx,00))A)
D char(loc%p(Hio(K, T))/Alocs, (ck,o0)),

and by definition inda(c) divides ¢ oloc§, (ck, o). The theorem follows easily from
these divisibilities and the divisibilities of Theorems 3.4 and 3.3. O
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4. Twisting by characters of finite order

Suppose c¢ is an Euler system for (T,K, ) as defined in Definition 1.1. The
consequences of the existence of such an Euler system described in §2 and §3 do
not depend on K (except that, in the case of §3, K must contain K,). We could
always take IC to be the “minimal” field i, described in Remark 1.4, and ignore
the rest of our Euler system, and still obtain the results stated above.

However, there is a way to make use of the additional information contained in
an Euler system for a non-minimal K. Namely, in this section we show how to take
an Euler system for (T, K, N') and obtain from it an Euler system for twists T'® x
of T by characters x of finite order of Gal(}C/K) (see below). For example, if K is
the maximal abelian extension of K, then we get Euler systems for all twists of T
by characters of finite order, and the results of this chapter give (possibly trivial)
bounds for all the corresponding Selmer groups.

Suppose x : Gxg — O is a character of finite order. As in Example 1.1.2 we
will denote by O, a free, rank-one O-module on which Gi acts via x, and we fix
a generator &, of O, We will write T'® x for the representation 7' ®o O,.

DEFINITION 4.1. Suppose ¢ is an Euler system for (T, K, N') and x is a char-
acter of finite order of Gal(K/K) into O*. Let L = K**X) be the field cut out
by x. If KC, F C K, define ¢} € H'(F,T ® x) to be the image of cry, under the
composition

®Ex Cor
_— —_

HY(FL,T) HYFL,T)® O, 2 H (FL,T®x) HY(F,T®Yx)

(we get the center isomorphism since Gy, is in the kernel of x).
PROPOSITION 4.2. Suppose ¢ is an Euler system for (T,K,N') and
x : Gal(K/K) — O*
is a character of finite order. If f is the conductor of x then the collection
{e}: K, F CK}
defined above is an Euler system for (T ® x, K, fN).
Proor. If K C,FC,F’' C K then using Definition 1.1
Corpryp(cy,) = Corprpp(crr @ &y)
= Corpprp ((Corprp prerr) @ &y )

ZCOTFL/F<( H P(FI‘q—1|T*;FI'q_1)CFL) ®§x>

qeS(F'L/FL)

= COI'FL/F( H P(Frq_1|T*;X(Frq)F1“q_l)(CFL ®§X)>
4€S(F'L/FL)

= H P(Fr;1|T*;X(Frq)Fr;1)CorFL/F(cFL ®&y)
qES(F'L/FL)

- JI PENTe E e
q€S(F'L/FL)
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where as usual P(Frq_1|(T ® x)*; ) = det(1 — Frq_lx|(T ® x)*), and
Y(F'L/FL) = {primes q not dividing A : ¢ ramifies in F’L but not in FL}
= {primes g not dividing fA : g ramifies in F’ but not in F}.
This proves the proposition. O
LEMMA 4.3. With notation as in Definition 4.1, if KC,F C Ko, LC L' C K,

and the conductor of L'/ K is equal to the conductor of L/K, then the image of cx.
under the map

os ® !
B, FUFL,T®y) -2 HY(FL,T)

HY(F,T® )
8
Z X((S)(SCFL/.

S€Gal(FL'/F)

PROOF. Since c is an Euler system, and every prime which ramifies in L'/ K
ramifies in L /K, we have Corgr//prcrrs = cpr. Thus the image of ¢} under the
map above is

(ReSFL//FcorFL/F(CFL ®§X>) ®€;1 = (ReSFL//FcorFL’/F(CFL’ ®£X)) ®§;1
(X o)) eg!

S€Gal(FL'/F)

= Z X(a)ch‘Lh O

S€Gal(FL'/F)
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CHAPTER III
Examples and Applications

In this chapter we give the basic examples of Euler systems and their applica-
tions, using the results of Chapter II.

1. Preliminaries

Suppose x is a character of Gk into O*. As in Example 1.1.2 we will denote
by O, a free, rank-one O-module on which Gk acts via x. Recall that D = ®/0 =
0 ® (Qp/Zy), and we also write D, =D ®p Oy = O, ® (Q,/Z,).

For the first three examples (8§82, 3, and 4) we fix a character x : Gx — O* of
finite, prime-to-p order into the ring of integers of a finite extension of Q,. As in
Chapter I §6.2 we let ' = O, and then W =D, T* = O(1) ® Oy-1 = O
where €.y is the cyclotomic character.

Let L = K¥*'X be the abelian extension of K corresponding to x, so [L : K] is
prime to p, and write A = Gal(L/K). As in Definition 1.6.2, if B is a Z[A]-module
we write BX for the y-component of B”®z, O as in Definition 1.6.2. We also fix a
generator of O, -1, and this choice determines an isomorphism BX 2 (B"® O, -1 )A.

X lecye

LEMMA 1.1. (i) If x # 1 then Hl(L(,upoo)/K,W) =0.
(i1) If x is not congruent to the cyclotomic character modulo the mazimal ideal

of O then H' (L(pye )/ K, W*) = 0.

ProOOF. Write = L(p,) as in §I1.2. Suppose p : Gx — O is a character.
Write k for the residue field O/p of O and k, = k ® O,. Since |A| is prime to p,
the inflation-restriction sequence shows that

H'(Q/K,k,) = Hom(Gal(Q/L),k,)* = Hom(Gal(Q/L), k')

(note that A acts trivially on Gal(€2/L) because /K is abelian). Further, if 7 is a
generator of p, it follows from the exact sequence 0 — k, — D, = D, — 0 that

H'(Q/K,k,) =0 = H'(Q/K,D,),=0 = H'(Q/K,D,)=0.

If p is not congruent to 1 modulo p, then kf =0 and so H'(Q2/K,D,) = 0.
Applying this with p = x proves (i), and with p = x "'ecye proves (ii). O

2. Cyclotomic units
The Euler system of cyclotomic units is studied in detail in [Ko2] and [Ru3].

33
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2.1. An Euler system for Z,(1). Take K = Q. For every extension F' of
Q, as in Example 1.2.1 Kummer theory shows that

n

HY(F,2,(1) = lim HY(F, ) = lim P /(P = () (1)

where (F*)" is the p-adic completion of F*.
Fix a collection {(,, : m > 1} such that (,, is a primitive m-th root of unity

and ¢",, = (, for every m and n. (For example, we could fix an embedding of Q

into C and choose ¢, = €27/ ™.) For every m > 1 and prime ¢ we have the relation

(Cm - 1) if ¢ | m
NQ(um;,)/Q(um)(Cme 1) =4 (Cn — l)lfFr;1 if £tm and m > 1 (2)
(—1)1y if m=1

where Fry is the Frobenius of ¢ in Gal(Q(u,,,)/Q) (see for example [Lan] Theorem
6.3.1). For every m > 1 we define

émoo = NQ(H,"LP)/Q(;L,,,L)(Cmp - 1) € Q(Nm)x - Hl(Q(Nm)7Z1)<1))

and €, = Nq(, y/Q(u, )+ (Cmoo). The distribution relation (2) shows that the
collection {€00, €} is an Euler system for (Z,(1),Q,p) (see Definition I1.1.1
and Remark I1.1.3), since for every prime ¢ # p,

det(1 — Fr; '2|Z,(1)*) = det(1 — Fr, '2|Z,) = 1 — =.

REMARK 2.1. If p | m then (2) shows that €00 = (i — 1. But if p f m, our def-
inition takes into account that our Euler system must satisfy Ngq, Hy)/Q w,,)Cmp =
Cn- This causes us to lose some information, and leads to the unwanted hypoth-
esis x(p) # 1 in Theorem 2.3 below. We can remove this hypothesis either by
using Theorem 2.10 below (see Remark 2.5) or by modifying the definition of Euler
system as in Example 1X.1.1.

2.2. The setting. Let K = Q and K. = Qu, the cyclotomic (and only)
Z,-extension of Q. As in §1 we fix a character x : Gq — O™ of finite, prime-to-p
order, and we assume now that x is even and nontrivial.

Let f denote the conductor of x, and recall that L is the field cut out by x. We
will view x as a Dirichlet character modulo f in the usual way, so that x(q) = 0 if the
prime ¢ divides f, and otherwise x(¢q) = x(Fry). For every n > 0let Q,, C Q(ft,n+1)
be the extension of degree p™ in Qu, L, = LQ,, and Lo, = LQs. Since [L : Q]
is prime to p, L N Q,, = Q for every n and we can identify A = Gal(L/Q) with
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Gal(L,,/Q,) for every n.
Lo

v
pnzp

Qx

Ly,
P Zp A \Z/p"'Z
Qn/ L
Z/p"\ A/
Q

Let T'= O, as in §1, so that T* = Z,(1) ® x . The restriction map gives an
isomorphism (using (1))
HY(Qu ) = HY (L, T)® = (LIGO, )2 = (L)X C LXGO  (3)
where the symbol & stands for the (p-adically) completed tensor product.
The Euler system ¢ for Z,(1) constructed in §2.1 gives rise (by Proposition

I1.4.2) to an Euler system ¢ = &X' for (T*,Q?,pf). By Lemma I1.4.3, the image
of cq in L*®O under (3) is

[T e ®= I - (4)

6€Gal(Q(up)t/Q) 6€Gal(Q(uy,)/Q)

2.3. The Selmer group. We have W = D,,. Writing Q,, ;, for the completion
of Q, at the unique prime above p, we take H}(Qn’p,V) = H!(Qnp, V) as in
Chapter I §6.2.

For every n let A, be the ideal class group of L,. We also write Ay, = Ag, the
ideal class group of L. By Proposition 1.6.1 we have isomorphisms

S(Q, W) 2 Hom(Az,Dy)?,  S(Qu, W) = Hom(lim A,,, D). (5)
2.4. The ideal class group of L.

DEFINITION 2.2. If n > 0 we let &, denote the group of global units of L,.
We define the group of x-cyclotomic units Cy, , to be the subgroup of £X generated
over O[Gal(L,/Q)] by

I1 (-1 @ if n =0
by = OCOQE/Q B
’ 11 (CGprn = 1X @i > 0.
0€Gal(Qn(ky,n+1)/Qn)

We also will write £, = &y, Cry, = Co, and &1,y = o,y

The following theorem (actually, its Corollary 2.4) was first proved by Mazur
and Wiles [MW]; the proof given here is due to Kolyvagin [Ko2]. See the additional
remarks following the proof.
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THEOREM 2.3. Suppose that p > 2 and x(p) # 1. Then
|AY|  divides [EF :CpLy].

Proor. We will apply Theorem I1.2.2 with the Euler system c constructed
from cyclotomic units above. Since rankp7™* = 1, Hyp(Q,T™) is satisfied with
7 = 1. Further, in this case Q0 = L(upoo), and since x is nontrivial and even,
Lemma 1.1 shows that the error terms ny - and nj,. in Theorem I1.2.2 are both
Zero.

By (3) we have maps

& = (L)X = HY(Q,T").
Identifying £, , with its image in H'(Q,T™), it follows from (2) and (4) that

1y 1
cq =60 " (6)

where x(p) = 0if p | f. Since x(p) # 1 and y has order prime to p, 1 —x~1(p) € O
so cq generates Cr, .

Recall that indp(c) is the index of divisibility defined in Definition I1.2.1. Since
L* /&y, is torsion-free, it follows that indp(c) is the largest power of p by which a
generator of Cp,, can be divided in £F. Since p > 2, x is even, and x # 1, the
Dirichlet unit theorem (see for example [T5] §1.4) shows that £F is free of rank one
over O, and we conclude

ind@(c) = 80(52‘/(3“().
Putting all of this together, Theorem II.2.2 in this case gives
|Ss, (Q,W)| divides [E) :CpLy].

Let 7 denote an inertia group above p and Fr, € Gq a Frobenius element. By
Lemma 1.3.2(i),

Hy(Qp, V) = VE/(Fry, = DVE =V /(x(p) - VT =0
since x(p) # 1. Therefore H}(Qp, W) =0 and
S, (Q, W) = S(Q, W) = Homp (A}, D),
the second equality coming from (5). This completes the proof. O

A well-known argument using the analytic class number formula takes Theorem
2.3 for all such characters y and gives the following strengthening.

COROLLARY 2.4 (Mazur & Wiles [MW] Theorem 1.10.1). With hypotheses as
in Theorem 2.3,
[ ALl = (€7 : Cryl.

PROOF. See for example [Ru3] Theorem 4.2. O

REMARKS 2.5. When p divides the order of y, Theorem II1.2.2 still applies to
give a bound for §(Q, W), but (see Proposition 1.6.1) this Selmer group is no longer
exactly the ideal class group.

When x(p) = 1, (6) shows that cq = 0, so Theorem II.2.2 is of no use. However,
in this case Greenberg ([Grl] §5) has shown how to deduce the equality of Corollary
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2.4 from Theorem 2.10 below (Iwasawa’s “main conjecture”) which we will prove
below using Theorem I1.3.3. See also Chapter IX §1.
Theorem I1.3.3 also applies when p = 2.

2.5. Inverse limit of the ideal class groups. Recall that A is the Iwasawa
algebra O[[Gal(Qw/Q)]]. For every n let L, , = L, ® Q, and denote by U, the
local units of L, ,. Define

As = IHP (An)", Ex = hjp (En)"s Coo,x = liJP (C%X)Aa

n

Uso = hjll (Un)Aa Yoo = hgp (L"’p)A’

all inverse limits with respect to norm maps, where (- )" denotes p-adic comple-
tion (Definition 1.6.2). Also let £/ denote the group of p-units of L, (elements
which are units at all primes not dividing p) and &£, = lim (£},)". Recall that
HL,(Q,T*) = lim H'(Q,,, T*) and similarly for H} (Qp, T*) and HL, [(Q,,T*) =
lim H'(Qnp, T*)/H}(Qn.p, T*), where H}(Qy, , V*) is defined as in Chapter I §6.3.

PROPOSITION 2.6. (i) With the natural horizontal inclusions and surjec-
tions, there are vertical isomorphisms making the following diagram com-
mute.

Meq,} = Hi(QT*) — HL(QyT*) — H (QpT")

TR g J

Coox = (&) = Y - YX/UX.
(ii) There is a A-module isomorphism
yxjux =)0 X)) #1
O ifx(p) = 1.

(i) There is a A-module injection (EL)X/EX — O.

PRrROOF. Just as for (4), Lemma I1.4.3 shows that the image of cq, in (L)X
under (3) is &gy, so the left-hand vertical isomorphism is clear. As in Chapter I
§6.3, the restriction isomorphism (3) identifies

SHQu, T") = (€))%,
and by Corollary B.3.4
lim H'(Q,, T%) = lim §7H(Q,, T7),
so we get the second vertical isomorphism. With H} as defined in Chapter I §6.3,
we see as in (7) of §1.6.3 that there are restriction isomorphisms (the top row is the

local analogue of (3))
Hl(Qn,va*> —— (L’rf,p)x

U U
H}(Qup T*) ——  UX

and the rest of the diagram of (i) follows. (Note that once we have the vertical
isomorphisms, the injectivity of the upper center horizontal map follows from that
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of the lower center horizontal map; the latter injectivity follows from Leopoldt’s
conjecture, which is known in this setting.)

Let A, denote the decomposition group of p in A. For every m > n there is a
diagram with horizontal isomorphisms

Doy |pordw
—

LY, »/Un @w‘pr —=— Z[A/A}]
NLm/Lnl wleLnl H
Dy|pordy ~
LY,/ Un —— @, Zv —— Z[A/A,],

and so YX/UX = Z,[A/A,)x. Clearly Z,[A/A,])X # 0 if and only if x is trivial on
A,, i.e. if and only if x(p) = 1. This proves (ii), and (iii) follows from (ii) since X
is the kernel of the natural map (€.)X — YX/UX. O

THEOREM 2.7. char(AX)) divides char(€X /Cooy).

ProOF. Hypotheses Hyp(Qoo, T) are satisfied with 7 = 1, so we can apply
Theorem I1.3.3 and Proposition I1.3.7 to conclude that

char(Homo (S(Qoo, W), D)) divides inda(c) char(HL, ,(Qp, 7))

with inda(c) as defined in Definition I1.3.1. By [Iw3] Theorem 25, YX is a
torsion-free, finitely-generated, rank-one A-module. Since (£.,)X is a nonzero A-
submodule of YX, (£,,)X is also torsion-free, finitely-generated, and rank-one.
Combined with the diagram of Proposition 2.6(i), it follows easily that inda(c) =
char((€.,)X/Cs %), and so using Proposition 2.6(iii)

indp(c) divides Jchar(EX/Coo,y)

where J = char(0), the augmentation ideal of A. By (5), Homo(S(Qeo, W), D)
AX,, and by Proposition 2.6, char(HZ, ,(Qp, T*)) divides J. Thus we conclude that

char(AX) divides J?char(€EX /Coo.)

so to prove the theorem we need only show that char(AX) is not divisible by 7.

We only sketch the proof. A standard elementary Iwasawa theory argument (see
for example [Iw3] §3.1) shows that AX /JAX is a finitely-generated Z,-module,
that

J | char(AX) < AX /JAX is infinite,
and that AX /JAX = Gal(Mu/Lo) where My, is an extension of Lo, which is
abelian over L. Since x is even, L is a real abelian field, and Leopoldt’s conjecture
holds for L. Therefore class field theory shows that L has no Z%—e;»ctensions7 SO

Gal(Ms /L) has Z,-rank one and [My : Loo] must be finite. This completes the
proof. O

COROLLARY 2.8. char(AYX ) = char(£X /Coo.y)-

PRrOOF. As with Corollary 2.4, this follows from Theorem 2.7 and the analytic
class number formula. See for example [MW] §1.6, or [Ru3] p. 414. O
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2.6. The p-adic L-function. Let w: Gq — (Z;)tors denote the Teichmiiller
character giving the action of Gq on p, (if p is odd) or p, (if p = 2). Thus
wteeye is a character of Gal(Qwo/Q). Fix an embedding of O — Q, — C so
that we can identify complex and p-adic characters of finite order of Gq. With this
identification, a character p of Gal(Qo,/Q) of finite order extends naturally to an
O-algebra homomorphism p : A — Q,,.

THEOREM 2.9. (i) There is an element L, € A (the p-adic L-function at-

tached to x) such that for every k > 1 and every character p of finite order

of Gal(Q/Q),
(W eeye)fp(Ly) = (1 = w ™ px(p)p" " L(1 — k,w " px).
(ii) char(UX /Coo,y) = LyA.

PROOF. See for example [Iw2] §6 or [Wa] Theorem 7.10 for (i), and [Iw1],
[Wa] Theorem 13.56, [Lan] Theorem 7.5.2, or (for the general case) [Gi] Théoreme
1 for (ii). (See also Appendix D §2 where we carry out the main computation
needed to prove (ii).) O

THEOREM 2.10. Let M., denote the maximal abelian p-extension of Lo, which
is unramified outside primes above p, and let Zoo = Gal(Muoo/Loo). Then Zo is a
Gal(L/Q)-module and a finitely-generated A-module, and

char(ZX) = LA
where L, is the p-adic L-function defined in Theorem 2.9.

PROOF. Class field theory gives an exact sequence (see for example §I11.1.7 of
[dS])

0 —EX/Coony — UYL /[Cooy — Z% — A, — 0.

Applying Corollary 2.8 and Theorem 2.9(ii) proves the corollary. O

3. Elliptic units

Let K be an imaginary quadratic field, K, a Zj- or Zg—extension of K in which
no (finite) prime splits completely!, x : Gx — O a character of finite order, and
T = O, as above. Using elliptic units in abelian extensions of K, exactly as with
cyclotomic units in §2, we can define an Euler system cen for Z,(1) over K, from
which we get an Euler system for T*. See [Ru5] §1 and §2 for details.

Keep the notation of §2, except that we now for an abelian extension F' of K
we let Cr,, denote elliptic units in (F'*)X instead of cyclotomic units. Then exactly
as in §2, Theorems I1.2.2 and 11.3.3, respectively, prove the following two theorems
(compare with [Ru5] Theorems 3.3 and 4.1).

THEOREM 3.1. Suppose that p > 2 and x(P) # 1 for all primes P of K above
p. Then

|AY]  divides [EF : CpLy].

Hn fact, this splitting condition is unnecessary; see Chapter IX §2,
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THEOREM 3.2. If x(B) # 1 for all primes P of K above p, then
char(lim A}) divides char(lim £y /Cr ).
where the inverse limits are over finite extensions F' of L in LK.

REMARKS 3.3. As with cyclotomic units, one can use the analytic class number
formula to turn the divisibility of Theorem 3.1 into an equality.

One can remove the hypothesis that x(3) # 1 from Theorem 3.2 by modifying
the definition of an Euler system. See Chapter IX §1.

4. Stickelberger elements

The Euler system we present in this section is not the same as the Euler system
of Gauss sums introduced by Kolyvagin in [Ko2] (see also [Rud]), but it has the
same applications to ideal class groups. We will use Stickelberger’s theorem in the
construction of our Euler system, so Gauss sums are implicitly being used.

DEFINITION 4.1. For every integer m > 2, define the Stickelberger element
a 1 _
o= ¥ (YD) Qe
a€(Z/mZ)>*

where 0 < (a) < m, {(a) = a (mod m), and v, € Gal(Q(x,,)/Q) is the automor-
phism which sends every m-th root of unity to its a-th power. Also define 6; = 0.
It is well-known (and easy to check; see for example [Wa] Lemma 6.9 or [Lan] §2.8)
that

if b € Z is prime to 2m, then (b — )0, € Z[Gal(Q(w,,)/Q)] (7)

and if £ is prime,

(®)

O |Q(um):

(1—Fr,; 10, iflfm
O, if £ | m.

4.1. An Euler system for Z,. Again we take K = Q. For every finite
extension F' of Q, class field theory shows that

HY(F,Z,) = Hom(Gr,Z,) = Hom(A}/F*,Z,) = Hom(A}/(F*Br),Z,) (9)
where A% denotes the group of ideles of F' and
Br =[] Fx < [[{1} x [] 0%. c Af,
w|oo w|p wipoo

since any (continuous) homomorphism into Z, must vanish on Bp. Further, the
map which sends an idele to the corresponding ideal class induces an exact sequence

O—>UF/5_F—>A;<7/(FXBF)—>AF—>O (10)

where Ur denotes the local units of F'® Q,, Er is the closure of the global units of
F in Up, and AF is the ideal class group of F. We will write Z[u,,]* = Uq,, )-
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DEFINITION 4.2. Fix an integer b prime to 2p (a precise choice will be made
later), and for every m > 1 prime to b we use the Stickelberger elements above to
define

oo = {(b = )6 Eelm - gica(Q(u,)/Q)

(b—w)(1— Fr;l)ﬁm ifptm

(the two separate cases are to ensure, using (8), that 952, lQ(u, )= oY) for every
m). Stickelberger’s Theorem (see for example [Wa] Theorem 6.10 or [Lan] Theorem
1.2.3) shows that éﬁg)AQ(um) = 0. Thus, using (10) we can view (multiplication

by) 9_7(,?) as a map

A Q) Bau,) — Zplbm]* [€qu,,):

and we define ¢, = ¢ € Hom(Ag,, /(Qkt) “Bau,)): Zy) to be the compo-
sition
x » i .
A&/ Q) Baw,)) == Zplkn]™ /Eau,,)
1—c A

— Zp[p, ) (Zp[iy] Vtors = Zyp
where ¢ denotes complex conjugation in Gal(Q(i,,)/Q), so (1 —c)€qu,,) is finite,
and A, is the map defined in Appendix D, Definition D.1.2. Finally, we define
¢, € H(Q(u,,), Z,) to be the element corresponding to ¢,, under (9).

PROPOSITION 4.3. Suppose m is prime to b and £ is a prime not dividing b.
Then
1-Fr, e, ifttmp
Cor ) = ( e mm
Q(I“"'m,é)/Q(""?n)( me) {é;n if €| mp.
ProOF. It follows from a standard result of class field theory (for example [T2]
§11(13)) that, with the identification (9), the map Corq,, ,)/Q(u,,) is induced by
the inclusion Aj — Aj

Q1) Q(Hme)”
Suppose first that £ { mp. By Lemma D.1.4, Anelz,[p, 1« = Am © (—Fry), and

by (8), gﬁfb% lQ(u, )= (1 — Fr;1)§£3>. Therefore

¢’”e‘Aémm> = ¢m © (—Frg)(l — Fr;l) = ¢m 0 (1 — FI‘@) = (1 — Fr21)¢m

m

if ¢ divides mp then Lemma D.1.4 and (8) show that qumg\Aé( = ¢ and then
I

m

Corqu,.,)/Q(u) (€ime) = Ci- O

and hence Corqy, ,)/Q(u,,)(€me) = (1 — Fr,')&,. Similarly (but more simply),

!

: M
oo instead of €

m>

REMARK 4.4. Technically we should write ¢
class field of Q modulo m is Q(g,,)". But

since the ray

Corg. y/Quu, )+ (€m) =0 € H (Q(p,,)", Zy)

(because we annihilated all even components in our definition), so we will never
need to deal with those classes and there should be no confusion.
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For every prime £ # p,
det(1 — Fr[lx\Z;) = det(1 — Fr,'z|Z,(1)) =1 — ¢z,

But Proposition 4.3 shows that the collection {¢,, € H(Q(u,,),Z,)} satisfies a
distribution relation with polynomials 1 — Fr[l, not 1 — Z*IFrzl, so this collection
is not an Euler system for the trivial representation Z,. However, since

1—¢tr=1-2 (mod (¢ —1)Z,[z])

we can modify the classes ¢/,

(see Lemma IX.6.1 and Example IX.6.2) to produce
a new collection

{ém € Hl(Q(l"’m)’ Zp) cm > 1, (m’ b) = 1}

which 4s an Euler system for (Z,, Q" bp), where Q" denotes the maximal
abelian extension of Q unramified outside b. Further, we have ¢,» = ¢;,. for every
n. Note that this Euler system still depends on the choice of b.

4.2. The setting. As in §2 let K = Q, T' = O, for a character x of finite,
prime-to-p order of G, and we keep the rest of the notation of the beginning of
§2 as well. We now assume that x is odd, and we let b be a nonzero integer prime
to 2p and to the conductor f of x. (A precise choice of b will be made later.)

Let A = Gal(Q(py)/Q). Since x is nontrivial and of order prime to p,
H'(A,0,) = 0 for every ¢ > 0. Therefore the restriction map gives an isomor-
phism (compare with (9))

Hl(QmT) = Hl(Qn(Nf)ﬂ OX)A

= Hom(Aén(p,f)/Qn(uf)X y Ox)A C HOm(Aan(l—"f)’ O)v

(11)

the inclusion using our fixed generator of O,. The Euler system ¢ for Z, con-
structed in §4.1 gives rise (by Proposition II1.4.2) to an Euler system ¢ = &X for
(T,Q*»" bfp). By Lemmas I1.4.3 and IX.6.1(iii), the image under (11) of cq in
Hom(Aa(uf), 0) is

Yo x(@)der =Y x(8)5€; =Y x(8)¢}. (12)

dEA dEA 0EA

4.3. The Selmer group. We have W* =D, -1.__. Asin §2.2, let L be the
fixed field of the kernel of x, L, = LQ,, Q, the completion of Q, above p, A,
the ideal class group of L,,, and A, = Ay, the ideal class group of L.

We take H}(Qnp, V) and H}(Qun.p, V*) to be as defined in Chapter I §6.2 and
§6.3, respectively.

PROPOSITION 4.5. (i) S(Q,W*) = A%,
(i) S(Quo, W) = lim AY.

PROOF. Let &, denote the group of global units of L,. Since x is odd, £X
is finite so (&, ® Qp/Z,)X = 0. Now the proposition follows from Proposition
1.6.3(i). O
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4.4. The minus part of the ideal class group of L. The following theorem
(or more precisely, its Corollary 4.7) was first proved by Mazur and Wiles in [MW].
A proof using Euler systems, but somewhat different from the one here, was given
by Kolyvagin in [Ko2], see also [Ru4].

Define the generalized Bernouilli number

f
By, 1 = % S v Ha)a = x(6).
a=1

Recall w: Gq — (Z;)tors is the Teichmiiller character giving the action of Ggq on

i, (if p is odd) or py (if p = 2).
THEOREM 4.6. Suppose that p > 2, x(p) # 1, and x " *w(p) # 1. Then
AY| < |0/By 1 O).

PROOF. Since x # w, we can choose b prime to 2pf so that b— x(b) € O*. Let
c be the Euler system for T' constructed above from Stickelberger elements, with
this choice of b.

Since T has rank one over O, Hyp(Q,T)(i) and (ii) are satisfied with 7 = 1, so
we can apply Theorem I1.2.10 with this Euler system.

As in the proof of Theorem 2.3, since x is odd and different from w, Lemma
1.1 shows that nyy = nj; = 0 in Theorem 11.2.2.

Using the definition of H} in Chapter I §6.2 and local class field theory, we
have identifications (the top row is the local analogue of (11))

Hl(QpaT) e Honl(@w|;z)C7VQ(/.1,f)w7(Qx)A — Hom(Qp(u’f)XvoX)A

I ! l

~

Hsl(QPaT) - Hom(@w‘pr,OX)A — HOHl(Zp[.u,f}X,OX)A
where Q,(ps) = Q(ps) ® Qp and Z,, is the inertia group in Gr,,. Thus
—1
Hsl(vaT) = Hom(Zp[;,Lf]X,(’)X)A = Hom(Zp[pf]X,(’))X . (13)
With this identification, using (12) and Definition 4.2 of g;b),

loci,y 7(cq) = > X(8)(As 0 8)°
dEA

=3 " X(@)(Ap 0071

dEA

=Aro Y (x(8)6Ho

JEA
= (b—x(1)1 = x""(P)Biy—1 Y x(O)A}.
dEA
Since x 'w(p) # 1, Lemma D.1.5 shows that > ;. x((S))\‘} generates the (free,
rank-one) O-module Hom(Z,[p ], 0)X"". We chose b so that b — x(b) € 0%, and

we assumed that x(p) # 1 and x has order prime to p, so 1 — x(p) € O*. Thus
(13) shows that

Oloc,y r(cq) = By - H}(Qp,T).
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Now Theorem I1.2.10 yields
S(Q,W*)| < [H;(Qp,T) : By -1 H(Qp, T)] = [O/By 10| O

COROLLARY 4.7 (Mazur & Wiles [MW] Theorem 1.10.2). With hypotheses as
in Theorem 4.6,

[ALl = 10/B1,-: 0.

PROOF. As in Corollary 2.4, this follows from Theorem 4.6 by the usual ana-
lytic class number formula argument. See for example [Ru4] Theorem 4.3. O

REMARKS 4.8. If x = w then it is well-known that AY =0 (and By, -0 =
p~tO).

If x(p) =1, or x 'w(p) = 1 but x # w, the equality of Corollary 4.7 can
be deduced from Theorem 4.13 below (Iwasawa’s “main conjecture”). See [M'W],
§1.10 Theorem 2. See also Chapter IX §1.

1

4.5. The p-adic L-function. There is a natural map
Xa : O[[Gal(Quc (14)/Q)]] = O[A][[Gal(Qoe /Q))] = A
given by x on A and the identity on Gal(Q./Q). Let
(€) = w leeye 1 Gal(Quo/Q) — 1+ pZy,
let Tw.) : A — A be the twisting map induced by
7= ()Y

for v € Gal(Qo/Q), and let n — n*® denote the involution of A induced by v +— v~

for v € Gal(Qw/Q).
Write O fp0c = {0fpn+1},. If b is prime to 2fp then by (7) and (8),

(b—7)0pp= € Zp[[Gal(Q(,UprOC)/Q)Hv

and so by restriction we have xa((b — )0 fp=) € A. If x # w then we can fix b so
that b — x(b) € O, and then xa(b— ) € A*. We will write

1

XA (0 fp) = xa(b = 76) " XA (b = )8 p=) € A
which is independent of b.

THEOREM 4.9. If x # w then

XA(prN). = TW<E> (‘cxflw)
where L1, is the p-adic L-function defined in Theorem 2.9 for the even character
—1
X w.

ProOF. This was proved by Iwasawa; see [Iw2] §6 or [Wa] Theorem 7.10. If
p is a character of finite order of Gal(Qo/Q), it follows from the definitions that
p(xa(@p=)®) = 7 (xa(Osp=)) = (1 = x"'p(p))B1y-1,
= (L= x""p) L0, x"p) = (e)p(Ly-10) = p(Tw(e) (Ly-10))-
Since this is true for every p, the equality of the theorem holds. O
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4.6. Direct limit of the ideal class groups. The main result of this section,
Theorem 4.13 below, is equivalent to Theorem 2.10 by standard methods of Iwasawa
theory (see for example [Ru3] §8), so we will only sketch the proof.

Let U denote the direct limit (not the inverse limit) of the local units of

Qn(py) ® Qp. Recall that A = Gal(Q(p)/Q) = Gal(Qn(py)/Qn)-

LEMMA 4.10. There is an isomorphism of A-modules

A if x(p) # 1

Hom(, 0 ) {AEB(’) if x(p) = 1.

SKETCH OF PROOF. Let Y., denote the inverse limit of the p-adic completions
of the multiplicative groups Q,(u fpn)x. There is a natural Kummer pairing

U XYoo — Zp(1)
which leads to a A-module isomorphism
(Yoo ® Oxw_l)Gal(Q(#fop)/Q) >~ Hom(U, OX)A ® O(s)-

The lemma then follows from a result of Iwasawa ([Iw3] Theorem 25; see also [Gi]
Proposition 1). O

COROLLARY 4.11. Suppose x # w. Then we can choose b so that, if ¢ is the Eu-
ler system of §4.2, then the characteristic ideal char(H, ((Qp,T)/Aoc],, ({cq, }n))
18
TW(&) (‘folw) ZfX (.«J(p) 7é ( ) 7é 1
TW(E)(j'CX—lw) ZfX lw p) =
jTW(s) (‘folw) if X( ) 1

where J is the augmentation ideal of A.
SKETCH OF PROOF. For every n, exactly as in (13) we have
H(Qu . T) = Hom(U,,, 0,)
and so HY, [(Q,,T) = Hom(U, O, ). Let

Appe = lm Y x(6)A%,n € Hom(U, 0,)%
SEA

One computes, using Lemma 4.10, that there are A-module isomorphisms
0 if x~ w(p)#lx()#l
Hom(U, OX)A/AAfp“’,x = O(e) if x~ W(?)
o if x(p) = 1.

(The first case follows from Lemma D.1.5; the others require more work.) Also, by
definition of cq, and Lemma I1.4.3

1OC?P} (CQn) = Z X(a)Afp"+1 o(b-— %)prnﬂ.
SEA
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Thus

Aloct,y ({eq, tn) = M gpoe y 0 (xa(b—76)Xxa (O p))
= xa(b— %).XA(prw).A)‘fp"‘%x
= XA(efp"").AApr7x

Since b was chosen so that xa(b—~,) € A*. Now the corollary follows from Theorem
4.9. O

THEOREM 4.12. If x is an odd character of order prime to p and x # w then
char(Home (lim A, D))  divides Tw oy (Ly-14,)-

SKETCH OF PROOF. Since T has rank one over O, Hyp(Q,T)(i) and (ii) are
satisfied with 7 = 1. Thus we can apply Theorem I1.3.8(ii), and we conclude (using
Proposition 4.5(ii) to identify the Selmer group with the direct limit of the ideal
class groups) that

char(Homp (lim AX, D))  divides char(HY, ,(Qp, T)/Alocth ({eq, tn))-

If x(p) # 1 and x~'w(p) # 1, the theorem now follows immediately from Corollary
4.11.

The two exceptional cases remain. First suppose that xy 'w(p) = 1. In
this case we conclude from Corollary 4.11 that char(Home(lim A¥X,D)) divides
Tw oy (TLy-10), s0 to complete the proof it will suffice to show that Tw . (J)
cannot divide char(Homo (lim AX, D)).

Briefly, if Tw.(J) divides char(Homo (lim AX, D)) then class field theory and
Kummer theory show (see for example [Lan| Chapter 6 or [Wa] §13.5) that there
is a divisible subgroup of Q(uy, p,)* ® (Qp/Zy) which generates an unramified
extension of Q(ufpoo). But this would contradict Leopoldt’s conjecture, which
holds for Q(py, p,,)-

Now suppose x(p) = 1. In this case, if xo denotes the trivial character then
the definition (Theorem 2.9) of £, -1,, shows that

Xo(Tw () (Ly-10)) = () (Ly-10) = w ™ eeye(Ly-10) = (1= x(2))L(0,x) = 0.

In other words, J divides Tw (£, -1,,) so we cannot hope to show in this case
that char(Homo(lim AX, D)) is not divisible by J. Instead, one must “improve”
the Euler system c of §4.2, to remove this extra zero. We omit the details. O

THEOREM 4.13 (Mazur & Wiles [MW]).  If x is an odd character of order
prime to p and x # w then

char(Homo (lim AX, D)) = Tw ) (Ly-14,)-

PRroOF. This follows from Theorem 4.12 by the usual analytic class number ar-
gument. See [MW] §1.6, where this equality is deduced from divisibilities opposite
to those of Theorem 4.12. O
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5. Elliptic curves

The “Heegner point Euler system” for modular elliptic curves used by Kolyva-
gin in [Ko2] does not fit precisely into the framework we have established. We will
discuss later in Chapter IX §4 how to adapt Definition II.1.1 to include the system
of Heegner points. However, Kato [Ka3], [Scho] has constructed an Euler system
for the Tate module of a modular elliptic curve, using Beilinson elements in the
K-theory of modular curves.

5.1. The setting. Suppose F is an elliptic curve defined over Q, and take
K=Q,Kyx=Qx, O=12Z,, and T = T,(F), the p-adic Tate module of E as in
Example I.1.5. Then V = V,(E) = T,,(F) ® Q, and W = Ej,~. The Weil pairing
gives isomorphisms V = V* T = T* and W = W*. As in the previous sections,
Q,, will denote the extension of degree p" in Qo and Q, ; is the completion of Q,,
at the unique prime above p.

5.2. The p-adic cohomology groups. As in Example 1.6.4, for every n we
let

HHQup, V) = image(E(Qn,) © Qp — H' (Qup, V).

Since V' = V*, this also fixes a choice of H}(Qnm, V*), and these subgroups are
orthogonal complements as required.

For every n let tan(E/,q, ,) denote the tangent space of E/q, = at the origin
and consider the Lie group exponential map

expg : tan(E/q, ) = E(Qu,p) ®Q,.

Fix a minimal Weierstrass model of E and let wg denote the corresponding holo-
morphic differential. Then the cotangent space cotan(E/Qnyp) is QnpwEe, and we
let w}; be the corresponding dual basis of tan(E). We have a commutative diagram
in which all maps are isomorphisms

expg

tan(E/q, ) E(Qnp) ® Qp

2 |

QTMP s E(pn) 2y Qp 4N> El(Qmp) ® QP

where E is the formal group of E, p, is the maximal ideal of Qnp, F1(Qnp) is
the kernel of reduction in F(Q,), and the bottom isomorphisms are induced by the
formal group logarithm A\g and the isomorphism E(pn) — E1(Qup) of [T3] The-
orem 4.2. Using the latter isomorphism we will also view Ag as a homomorphism

from E(Qn,p) to Qn p-
Since V = V*, the local Tate pairing gives the second isomorphism in

Hom(E(Qn,p)a Qp) = Hom(H}(Qn,pv V)7 Qp) = Hj(QTL,]H V)-

Thus there is a dual exponential map (see [Kal] §I1.1.2)

exply : H(Qup, V) — cotan(E/q, ,) = Qnpwie.
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We write expl, @ HY(Qnp, V) — Qup for the composition w}, o exp},. Since
HY(Qunp, T) injects into HY (Qy.p, V), exp, is injective on H}(Qy p, T). The local
pairing allows us to identify

Hsl (Qnypv V) — Hom(E(Qn’P)a Qp)

T T (14)
H{(Qpp, T) —— Hom(E(Qnp), Zy).
Explicitly (see [Kal] Theorem I1.1.4.1(iv)), 2 € H}(Qp p, V) is identified with the
map
T — TrQn’p/Qp)\E(as) expy, (2). (15)
PROPOSITION 5.1. exp}, (HX(Qp.T)) = [E(Qp) : E1(Qp) + E(Qp)tors)p™ ' Zy.

PROOF. The diagram (14) shows that an element of H!(Q,,V) belongs to
H!(Q,,T) if and only if the corresponding homomorphism takes E(Q,) into Z,.
Thus by (15),

expl,,, (Hy (Qp, 1)) = p"Z,y
where
Ap(E(Qp)) = p~*Zyp.
We have Ap(E1(Qp)) = pZ, and, since rankz, F(Q,) = 1,

Ae(E(Qp)) : Ae(E1(Qp)] = [E(Qp) : E1(Qp) + E(Qp)tors]-
This proves the proposition. O

5.3. The L-functions.

DEFINITION 5.2. Let

L(E,5) = Y awn™ =[] ty(a=)?

n>1

denote the Hasse-Weil L-function of E, where ¢,(¢™*®) is the usual Euler factor at
q. If m € ZT we will also write

= > an =TIt = ([Ttla™)L(Es)
(n,m)=1 gtm qlm

for the L-function with the Euler factors dividing m removed. If x is a character
of Gq of conductor f,, let

Lm(Ea e S) = Z Cl,n’fl o H e
(n,fxm)= qtfxm
When m = 1 we write simply L(E, x, s), and then we have
Lim(E, X, s (H lo( ) (E\x,3). (16)
qlm

If E is modular then these functions all have analytic continuations to C.
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5.4. The Euler system. Kato has constructed an Euler system in this set-
ting. Let N denote the conductor of E, and let Qg be the fundamental real period
of E (which corresponds to our choice of differential wg).

THEOREM 5.3 (Kato [Ka3]; see also [Schol). Suppose E is modular. There is
a positive integer Ty, independent of p, and an Euler system c for T,,(E) such that

exp;,, (locy,y(cq)) = reLlny(E,1)/Q5
and more generally for every n > 0 and every character x of Gal(Q,/Q),

> x(expl,(loch,y(edy,)) = reLnp(E, x, 1)/Qp.
+€Gal(Qn/Q)

See [Scho], especially §5, for the construction of the Euler system and the
proof of the identities in the case where E has good reduction at p. (See also [Ru9]
Corollary 7.2 to get from [Scho] Theorem 5.2.6 to the statement above.)

5.5. Consequences of Kato’s Euler system. Following Kato, we will apply
the results of Chapter II to bound the Selmer group of E. Let III(E) be the Tate-
Shafarevich group of E.

THEOREM 5.4 (Kato [Ka3]). Suppose E is modular and E does not have com-
plex multiplication.
(i) If L(E,1) # 0 then E(Q) and HI(E) are finite.
(ii) If L is a finite abelian extension of Q, x is a character of Gal(L/Q), and
L(E,x,1) #0, then E(L)X and III(E, )X are finite.

REMARKS 5.5. We will prove a more precise version of Theorem 5.4(i) in The-
orem 5.11 below. Kato’s is an Euler system for (7,(E), Qab:PD" NpDD’) for ap-
propriate auxiliary integers D, D', where QPP " is the maximal abelian extension
of Q unramified outside DD’. Thus (for some choice of D and D', depending on x)
Proposition I1.4.2 gives an Euler system for T},(E) ® x for every character x of Gq
of finite order, with properties analogous to those of Theorem 5.3. These twisted
Euler systems are needed to prove Theorem 5.4(ii). For simplicity we will not treat
this more general setting here, so we will only prove Theorem 5.4(i) below. But the
method for (ii) is the same.

Theorem 5.4(i) was first proved by Kolyvagin in [Ko2], using a system of
Heegner points, along with work of Gross and Zagier [GZ], Bump, Friedberg, and
Hoffstein [BFH], and Murty and Murty [MIM]. The Euler system proof given here,
due to Kato, is self-contained in the sense that it replaces all of those other analytic
results with the calculation of Theorem 5.3.

COROLLARY 5.6. Suppose E is modular and E does not have complex multi-
plication. Then E(Qu) is finitely generated.

PROOF. A theorem of Rohrlich [Ro] shows that L(E,x,1) # 0 for almost
all characters x of finite order of Gal(Qo./Q). Serre’s [Sed4| Théoréme 3 shows
that E(Qoo)tors is finite, and the corollary follows without difficulty from Theorem
5.4(ii). (See for example [RW], pp. 242-243.) O
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REMARK 5.7. When E has complex multiplication, the representation T, (E)
does not satisfy hypothesis Hyp(Q, V')(i) (see Remark 5.10 below), so we cannot
apply the results of §2 and §3 with Kato’s Euler system. However, Theorem 5.4
and Corollary 5.6 are known in that case, as Theorem 5.4 for CM curves can be
proved using the Euler system of elliptic units. See [CW], [Ru5] §11, and [RW].
See also Chapter VI §5.3.

5.6. Verification of the hypotheses. Fix a Z,-basis of T and let
PE.p - GQ — Aut(T) ; GLQ(ZP)
be the p-adic representation of Gq attached to I/ with this basis.

PROPOSITION 5.8. (1) If E has no complex multiplication, then T,(E) sat-
isfies hypotheses Hyp(Quo, V) and H(Q(Ey=)/Q, Epe=) is finite.
(ii) If the p-adic representation pg., is surjective, then T, (E) satisfies hypotheses
Hyp(Qoo, T') and Hl(Q(Ep‘”)/Qv Epee) = 0.

Proor. The Weil pairing shows that

GQuye) = Prp(SLa(Zy)).

If E has no complex multiplication then a theorem of Serre ([Se4] Théoréme 3) says
that the image of pg , is open in GLa(Z,). It follows that V,(FE) is an irreducible
Gq.. -representation, and if pg, is surjective then E, is an irreducible F,[Gq_ |-
representation.

It also follows that we can find 7 € GQ(MP such that

oo )
pep(T) =(57)

with = # 0, and such a 7 satisfies hypothesis Hyp(Qoo, V)(1). If pg, is surjective
we can take z = 1, and then 7 satisfies hypothesis Hyp(Qoo, T)(i).
We have

Hl(Q(Ep“’)/Qv Epee) = Hl(pEJ?(GQ), (Qp/zp)Z)
which is zero if pg ,(Gq) = GLa2(Z,), and finite if pg ,(Gq) is open in GLa(Z,).
This completes the proof of the proposition. O

REMARK 5.9. Serre’s theorem (see [Se4] Corollaire 1 of Théoreme 3) also shows
that if £ has no complex multiplication then pg , is surjective for all but finitely
many p.

REMARK 5.10. The conditions on 7 in hypotheses Hyp(Q, V)(i) force pg ,(7)
to be nontrivial and unipotent. Thus if £ has complex multiplication then there is
no 7 satisfying Hyp(Q, V)(i).

5.7. Bounding S(Q, Ep~). Recall that N is the conductor of E.

THEOREM 5.11. Suppose E is modular, E does not have complex multiplica-
tion, and L(E,1) # 0.

(i) B(Q) and LII(E)y~ are finite.
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(i) Suppose in addition that E has good reduction at p, p t 2rp|E(F,)| (where
E is the reduction of E modulo p and rg is as in Theorem 5.3), and pg, is
surjective. Then

LN (E7 1)

Qg

PRrROOF. Recall that £,(¢~*) is the Euler factor of L(E,s) at ¢, and that by
Proposition 1.6.7, S(Q, Epe) is the usual p-power Selmer group of E.

Since L(E, 1) # 0, and £,(¢!) is easily seen to be nonzero for every g, Theo-
rem 5.3 shows that locy,(cq) # 0. By Propositions 5.8(i) and 5.1 we can apply
Theorem II.2.10(i) to conclude that S(Q, E,) is finite. This proves (i), and it
follows (see for example Proposition 1.6.7) that S(Q, Epe) = HI(E)peo.

If E has good reduction at p then pl,(p~') = |E(F,)| and

[E(Qp) : E1(Qp) + E(Qp)tors]  divides |E~‘(Fp)‘
Therefore if p { rg|E(F,)| then

|II(E),e| divides

eXpZE(Hs}(vaTp(E))) = pilzp
U U
expl, (Zplociy(eq)) = p Ln(E,1)/Qp)Z,

by Proposition 5.1 and Theorem 5.3. By Proposition 5.8(ii), if further p # 2 and
pE,p is surjective then we can apply Theorem I1.2.10(ii) (with ny = nj, = 0) and
(ii) follows. O

REMARKS 5.12. In Corollary 5.18 below, using Iwasawa theory, we will prove
that Theorem 5.11(ii) holds for almost all p, even when p divides |E(F,)|. This is
needed to prove Theorem 5.4(1), since |E(F,)| could be divisible by p for infinitely
many p. However, since | E(F,)| < 2p for all primes p > 5, we see that if F(Q)tors #
0 then |E(F,)| is prime to p for almost all p. Thus Theorem 5.4(i) for such a curve
follows directly from Theorem 5.11.

The Euler system techniques we are using give an upper bound for the order
of the Selmer group, but no lower bound. In this case there is no analogue of
the analytic class number formula that enabled us to go from the Euler system
divisibility to equality in Corollaries 2.4 and 4.7.

5.8. The p-adic L-function and the Coleman map. Suppose for this sec-
tion that E has good ordinary reduction or multiplicative reduction at p. Let
a € Z) and = p/a € pZ, be the eigenvalues of Frobenius over F, if £ has good
ordinary reduction at p, and let (a, 8) = (1, p) (resp. (=1, —p)) if E has split (resp.
nonsplit) multiplicative reduction.

Fix a generator {(yn }, of lim p,,.. Write G,, = Gal(Q,,/Q) = Gal(Q,,/Q,)-
If x is a character of Gal(Qo/Q) of conductor p™ define the Gauss sum

T(x) = > X(V) -
+EGal(QH,n)/Q)

Fix also an embedding of @ into C so that we can identify complex and p-adic
characters of Gq.
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The following theorem is proved in [MSD] in the case of good ordinary reduc-
tion. See [MTT] for the (even more) general statement.

THEOREM 5.13. Suppose E is modular and E has good ordinary reduction or
multiplicative reduction at p, and let o be as above. Then there is a nonzero inte-
ger cg independent of p, and a p-adic L-function Lg € cglA such that for every
character x of Gal(Qo/Q) of finite order,

(1-aYH)2L(EN)/QE if x =1 and E has good reduction at p
XLe)=<¢ (1 —-aY)L(E,1)/QE if x =1 and E is multiplicative at p
a "1(X)L(E,x 1, 1)/QE if x has conductor p™ > 1.
If m € Z™T, define
Lom = ( I1 Eq(q_lFr(;l))EE € ¢z A.
qlm.q#p
Using (16) and Theorem 5.13 one obtains analogous expressions for x(Lg ) in

terms of L, (E,x™1,1).

PROPOSITION 5.14. Suppose that E has good ordinary reduction or multiplica-
tive reduction at p. Then there is a A-module map

Cole : HY, ((Qp,T) — A
such that for every z = {z,} € Héoys(Qp,T) and every nontrivial character x of
Gn;

X(Colo(2)) = a™F7(x) > x~'(7)expl, (27)
YEGR

where p* is the conductor of x. If xo is the trivial character then
Xo(Colos(2)) = (1 —a™")(1 = 71) " exp(,,, (20)-

Further, if E has split multiplicative reduction at p then the image of Coly, is
contained in the augmentation ideal of A.

PRrROOF. The proof is based on work of Coleman [Co]. See the appendix of
[Ru9] for an explicit construction of Cols in this case, and see Chapter VIII §1 for
a discussion of a generalization due to Perrin-Riou [PR2]. O

Using the Coleman map Coly, described above, we can relate Kato’s Euler
system to the p-adic L-function.

COROLLARY 5.15. With hypotheses and notation as in Theorems 5.3 and 5.13,
COIOO(IOC‘EZ)}({CQH})) = TELEJ\/'-

PRrROOF. If y is a character of Gal(Qu/Q) of finite order, then the definition
(Theorem 5.13) of Lz and (16) allow us to compute x(rgLg, n), Theorem 5.3 and
Proposition 5.14 allow us to compute x(Colw(locf,,({cq,}))), and these values
are equal (note that £,(p~!) is (1 —a~1)(1 — B71) (resp. (1 — 371)) if E has good

(resp. multiplicative) reduction at p). Since this holds for all such y, the corollary
follows. O
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5.9. Bounding S(Qu, Ep<). Let Zoo = Hom(S(Qoo, Ep), Qp/Z,). Recall
that N is the conductor of E.

THEOREM 5.16. Suppose E is modular, E does not have complex multiplica-
tion, and E has good ordinary reduction or nonsplit multiplicative reduction at p.
Then Zy is a finitely-generated torsion A-module and there is an integer t such
that

char(Zs) divides p'Lp yA.
If pp.p is surjective and pAre [1 n 4zp L,(qY) then char(Zy,) divides LA.
If E has split multiplicative reduction at p, the same results hold with char(Z.,)
replaced by Jchar(Zy,) where J is the augmentation ideal of A.

PrOOF. Rohrlich [Ro] proved that Lg # 0. Thus the theorem is immediate
from Propositions 5.8 and 5.14, Corollary 5.15, and Theorem I1.3.8. [

COROLLARY 5.17. Let E be as in Theorem 5.16. If p is a prime where E has
good ordinary reduction and

pJf H |E(Qq)tor8‘v
q|N

then Z., has no nonzero finite submodules.

PRrOOF. This corollary is due to Greenberg [Gr2], [Gr3]; we sketch a proof
here. Let X be the set of places of Q dividing Npoo, and let Qs be the maximal
extension of Q unramified outside ¥. By Lemma [.5.3 there is an exact sequence

0— S(Qoo»Ep"") B HI(QE/QOO,Ep“) — Dgex Dylq Hsl(Qoo,vaEpoo)' (17)

Suppose ¢ € £, g #p, and v | ¢. If pt |E(Qg)tors| then it is not hard to show that
E(Qoo,») has no p-torsion, and so by [Gr2] Proposition 2, H'(Qe v, Ep=) = 0.
Thus for p as in the statement of the corollary, the Pontryagin dual of (17) is

h_anE(Qn,p) ®Zy — Hom(Hl(Qg/Qoo, Ep<),Qp/Zyp) — Zoo — 0.

Since Qs /Q is totally ramified at p,
lim B(Qpp) ® Zy = lim £1(Qn,p) = lim E(p,)

and this is free of rank one over A (see for example [PR1] Théoreme 3.1 or [Schn]
Lemma 6, §A.1). It now follows, using the fact that Z, is a torsion A-module (Theo-
rem 5.16) and [Gr2] Propositions 3, 4, and 5 that Hom(H'(Qs/Qoc, Ep=), Qp/Zy)
has no nonzero finite submodules, and by the Lemma on p. 123 of [Gr2] the same
is true of Z. O

COROLLARY 5.18. Suppose E is modular, E does not have complex multiplica-
tion, E has good reduction at p, pt 2rg [, n €e(a™ )| E(Qq)iors| (where 75 is as in
Theorem 5.3), and pg,p is surjective. Then

L(E,1)

|II(E)pe | divides
Qp



54 III. EXAMPLES AND APPLICATIONS

PRrROOF. First, if E has supersingular reduction at p then |E(Fp)| is prime to
p, so the corollary follows from Theorem 5.11(ii).

Thus we may assume that E has good ordinary reduction at p. In this case the
corollary is a well-known consequence of Theorem 5.16 and Corollary 5.17; see for
example [PR1] §6 or [Schn] §2 for details. The idea is that if Z,, has no nonzero
finite submodules and char(Z,) divides LgA, then

18(Quo, By ) /D divides  xo(La.n),
where o denotes the trivial character, and
Xo(Lew) = (1—a P T]la(a ) (L(E, 1)/Qp).
alN

On the other hand, one can show that the restriction map
S(Q, Epee) — S(QOWEPOO)GM(QOO/Q)

is injective with cokernel of order divisible by (1 —a~1)2, and the corollary follows.
O

REMARK 5.19. The Birch and Swinnerton-Dyer conjecture predicts that the
conclusion of Corollary 5.18 holds for almost all, but not all, primes p.

PROOF OF THEOREM 5.4(i). Suppose E is modular, E does not have complex
multiplication, and L(E, 1) # 0. By Theorem 5.11, E(Q) is finite and HI(E),e is
finite for every p. By Corollary 5.18 (and using Serre’s theorem, see Remark 5.9)
IMI(E),e = 0 for almost all p. This proves Theorem 5.4(i). O

We can also now prove part of Theorem 5.4(ii) in the case where F has good
ordinary or multiplicative reduction at p and L C Q4. For in that case, by Theorem
5.16, x(char(Hom(S(Qoo, Ep=), Qp/Z,))) is a nonzero multiple of L(E, x,1)/Qg.
If L(E, x,1) # 0 it follows that S(Qoc, Epe )X is finite. The kernel of the restriction
map S(L, Epe ) — S(Qoo, Epe) is contained in the finite group H'(Qoo /L, Efo?"" ),
and so we conclude that both E(L)X and III(E,;)x~ are finite.

6. Symmetric square of an elliptic curve

Let E be an elliptic curve over Q and T,,(E) the p-adic Tate module of E. Let
T be the symmetric square of T,,(E), the three-dimensional Z,-representation of
Gq defined by

T=T,(E)eT,(E)/{tet —t' @ttt € T,(E)}

Suppose 7 has eigenvalues a, a™! on T,(E) with a? # 1 (mod p). Then 7 €
GQ(upoo) (as in Proposition 5.8), and 7 has eigenvalues o, 1,2 on T, so 7 satisfies
hypothesis Hyp(Q,T')(i). If the p-adic representation attached to E is surjective
and p > 3, then we can always find such a 7, and further T'/pT is an irreducible
Gq-module and H'(2/Q,W) = H'(2/Q,W*) = 0. Thus in this case if we had
an Euler system for T" we could apply Theorem I1.2.10 to study the Selmer group
§(Q,W™). See [F1] for important progress in this direction.



CHAPTER IV

Derived cohomology classes

The proofs of the main theorems stated in Chapter II consist of two steps. First
we use an Euler system to construct auxiliary cohomology classes which Kolyvagin
calls “derivative” classes, and second we use these derived classes along with the
duality theorems of Chapter I §7 to bound Selmer groups.

In this chapter we carry out the first of these steps. In §2 and §3 we define and
study the “universal Euler system” associated to T' and K,/K. In §4 we construct
the Kolyvagin derivative classes, and in §5 we state the local properties of these
derivative classes, which will be crucial in all the applications. The remainder of
this chapter is devoted to the proofs of these properties.

1. Setup

Keep the notation of Chapter IT §1: we have a fixed number field K, a p-adic
representation T of Gk with coefficients in the ring of integers O of some finite
extension ® of Q,, and we assume that 7' is unramified outside a finite set of
primes of K.

The letter q will always denote a prime of K. For every prime q of K not
dividing p, K(q) will denote the maximal p-extension of K inside the ray class
field of K modulo q. Similarly, let K(1) denote the maximal p-extension of K
inside the Hilbert class field of K. Class field theory shows that K(q)/K(1) is
unramified outside g, totally ramified above ¢, and cyclic with Galois group equal
to the maximal p-quotient of (Ok /q)* /(O (mod q)). Let I'y = Gal(K (q)/K(1)).

Fix an ideal A/ of K divisible by p and by all primes where T' is ramified, as in
Definition II.1.1. Define

R = R(N) = {squarefree products of primes q of K, ¢ N}.
IfreR,say vt =q1 - qk, then we define K (r) to be the compositum
K(v) = K(a1) - K(qr).

Note that K (r) is contained in, but not in general equal to, the maximal p-extension
of K inside the ray class field of K modulo t. We define

T, = Gal(K(v)/K(1)).

Ramification considerations show that the fields K(q) are linearly disjoint over
K (1), so there is a natural isomorphism

r.= J[ T,
primes q|t

55



56 IV. DERIVED COHOMOLOGY CLASSES

where I'y is identified with the inertia group of q in I'.. If s | ¢ this allows us to
view I'y as a subgroup of 'y, as well as a quotient.

Fix a Zg-extension K /K in which no finite prime splits completely, as in
Definition II.1.1. If K C F C Ko, let F(r) = FK(t). As in Chapter II, we will
write K C, F' to indicate that F' is a finite extension of K, and if K C, F' C K, we
let

Do = Gal(F(x) /K (1)).
Again, we will often identify I';, with the subgroup of I'p(;) generated by the inertia
groups of primes dividing v, and I'p(;) with the the subgroup generated by the
inertia groups of primes dividing p, and then (since K, /K is unramified outside
p)
FF(I) = FF(l) x I

As above, if 5 | v we can also identify I'p(5) with a subgroup of I'p(y).

Figure 1 illustrates these fields and Galois groups.

Koo(1)

F(rq)

e
(r)

I'r()
I'ra)
P
e K (1) .
e e K(q)
o

K(1)
|

F
£(1)

K

FIGURE 1

For v € R define
Ne= Y o€ Z[l\] C Z[Gal(K(x)/K)].
oel:

Ifs|vand K C, F C Ko we can view N, € Z[['\] C Z[Gal(F(r)/K)] as above, and
then Ny = NgN, /5.
As in Chapter II, let Fry denote a Frobenius of q in Gk, and

P(Fr;1|T*; x) = det(1 — Fr;1x|T*) € Olx].
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DEeFINITION 1.1. If K C, F C Ko and M € O is nonzero, define Rp s C R by

Rpm = {t € R:for every prime q dividing v, M | [K(q) : K(1)],
M| P(Fr;l\T*; 1), and q splits completely in F'(1)/K}.

As in Definition 1.4.6, if M € O is nonzero we let M € ZT denote the smallest
power of p which is divisible by M.

LEMMA 1.2. Suppose q € R is a prime of K.

(i) M |[K(q): K(1)] if and only if q splits completely in K (pyy, (le()l/M).
(ii) P(Fr;”T*;N(q)Fr;l) annihilates T.
(iii) If M | [K(q) : K(1)] then P(Fr;1|T*;x) = det(1 — Frqz|Wy) (mod M)
(iv) If M | [K(q) : K(1)] then P(Frq_1|T*;Frq_1) annihilates Wy .

PrOOF. Class field theory identifies Gal(K (q)/K) with the maximal p-quotient
of (Ok/q)*/(Of (mod q)). Thus if q { p, then [K(q) : K(1)] divides (N(q) — 1)
and

Fr, fixes py; < M divides |(Ok/q)*| & M divides |(Ok /q)*|.
If Fr, fixes puy; we have further
Fry fixes (O%)"/" & (Ok (mod q)) C (O /a))™.

This proves (i).
One checks easily that

P(Fry|T*;2) = det(1 — Fry 'a|T*) = det(1 — N(q) ™' Frqz|T).
This and the Cayley-Hamilton Theorem prove (ii), (iii), and (iv). O

The following lemma, together with the Tchebotarev theorem, will give a large
supply of primes in Rp . By F(Wys) we mean the smallest extension of F' whose
absolute Galois group acts trivially on W), (or equivalently, the fixed field of the
kernel of the action of Gr on Wyy).

LEMMA 1.3. Suppose T € G (1) acts trivially on p, and on (Ofx()l/pm, and
T™=1 £ 0. Suppose further that K C,F C Ko, M € O is nonzero, and q is a prime
of K not dividing N such that the Frobenius Frq of q is equal to (a conjugate of ) T
on F(1)(pg, (O)YM War). Then q € Rp .

PROOF. First, such a g is unramified in F'(1)(p 5z, (OIX()I/M,WM)/K. Since
Fry fixes K (py7, (05)YM), Lemma 1.2(i) shows that M | [K(q) : K(1)], and since
Fry fixes F(1), q splits completely in F'(1)/K. Also by Lemma 1.2(iii)

P(Frq_l\T*; 1) = det(1 — Frq|War) = det(1 — 7|War) = det(1 — 7|T) =0 (mod M),

the first equality since Fry is (a conjugate of) 7 on Wy, the second since T7=! =£ 0.
Thus qe RF,M- O
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2. The universal Euler system

DEFINITION 2.1. For every vt € R and K C F' C K, let () be an indeter-
minate. Define an O[Gal(F(r)/K)]-module Xp ) = Yp(e)/ Zp() where
Yr(v) is the free O[Gal(F'(r)/K)]-module on the generators {zp(s) : 5 | v},

Zp(v) is the submodule of Yp(,) generated by the relations
OZp(s) —TR(s) O € Gal(F(t)/F(s)) = Ft/s
quF(qs) - P(Frq_1|T*§ Frq_l)xF(s) q prime, qs | T, K(q) # K(l)
Tp(qs) — Tr(s) 9 prime,qs |v, K(q) = K(1).
In other words, Xp() is the quotient of the free O[Gal(F(r)/K)]-module on the
generators {Zp(s) : 5 | v} by the relations
o I'y/s acts trivially on xp(s),
® NyTp(gs) = P(Fr;1|T*; Ff;1)$p(5) if gs | v and q ramifies in F(v)/K,
® Tp(qs) = Tr(s) if 45 | v and q does not ramify in F'(r)/K.
(Note that if q | v, then q ramifies in F(r)/K if and only if the ramification degree
of q in the ray class field of K modulo q is divisible by p. This is independent of ¢
and F.)

If s | vand K C, F C, F' C K, there are natural O[Gal(F’(t)/K)]-module maps
Xpi(ey — Xp(r) induced by zp/ () — xp for t|r, (1)
Xp(s)y — Xpr(r) induced by xp() — Ny /pe)Tr ) for t]s. (2)
The map (1) is clearly surjective, and Lemma 3.1(v) below will show that the map
(2) is injective.
DEFINITION 2.2. The universal Euler system (for (T,N, K /K)) is
X = X(T,N, Koo/ K) = lim X -
P

Using the maps (2), (1) we also define

Xooye = lim Xpe and Xor = lim X .
K Cf FCKoo teER

For every v € R define
H! (K(v),T)= lim H'(F(x),T).

P
K Cf FCKoo

LEMMA 2.3. If ¢ is an Euler system for (T, K,N) with Ko, C K, then sending
TRy t0 Cp(e) nduces G i -equivariant maps

XF(t) - Hl(F(t)7 T) Xoo,t — H;o(K(t)v T)
X mH(FE.T)  Xeon — lim HL(K(),T)
F,v teER

direct limits with respect to restriction maps.

Proor. This is immediate, since (by Definition II1.1.1) the Euler system classes
{cp()} satisfy all the relations that the {zp()} do. O
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REMARK 2.4. Conversely, although we will not make use of it, it follows from
the following lemma that a map

X — lim HL (K (x),T)

tER

induces an Euler system for (7', Kyin, V), where Ky, is as in Remark 11.1.4.

LEMMA 2.5. (i) If KC,F C Ky and vt € R, then
TGre) = TGr)  gnd WEF® = WEro),
(ii) If ts € R then the restriction map induces an isomorphism
H (K (v),T) = H (K(vs), T)".

PrROOF. Since Gal(F(r)/F(1)) = T, is generated by inertia groups of primes
dividing v, and T is unramified at those primes, Gal(F(r)/F(1)) acts trivially on
TCr@ and WYr . This proves (i).

Let S be a finite set of places of K containing all places dividing A tsoo, and
let Kg be the maximal extension of K unramified outside S. (Recall that A is
divisible by p and all primes where T is ramified, so in particular K., (rs) C Kg and
T is a Gal(Kg/K)-module). By Propositions B.2.5(ii) and B.2.7(i), and using our
identification Gal(F'(vs)/F(r)) = I's, we have an inflation-restriction exact sequence

H'(F(vs)/F(x), 7)) — H'(Ks/F(x),T)

3
— H'(Ks/F(vs),T)"* — H*(F(vs)/F(x), Tr¢). )

By (i),

HY(F(xs)/F(x), T9t9) = H'(F(xs)/F(x), T°®) = Hom(Ts, T9F) = 0
and similarly

H?(F(vs)/F(x), T9F¢)) = TCrm) /|7, | T,

Now passing to the inverse limit over F' in (3), and using Corollary B.3.5 and
our assumption that the decomposition group of every finite prime is infinite in
Gal(K«/K), gives an exact sequence

0 — HY(K(x),T) — HL(K(xs), 1) — lim 6% /| 767

K Cf FCKoo

where the inverse limit on the right is with respect to norm maps. By Lemma B.3.2,
this inverse limit is zero, so this proves (ii). O

3. Properties of the universal Euler system
Recall that ® is the field of fractions of O.

PROPOSITION 3.1. Supposet € R, s|t, and K, FC, F' C K.

(i) Xpq) is a finitely generated, free O-module.

(ii) Xpr) @ ® is a free, rank-one module over ®[Gal(F(t)/K)].
(iii) Xp(r) is a free O[Gal(F (v)/K(x))]-module of rank [K(t) : K].
(iv) The map (1) induces an isomorphism

X pr(v) @oGal(F(v)/ k)] OlGal(F(v)/K)] — Xp(o).
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(v) The map (2) induces an isomorphism Xp () — Xg,a(lg/(t)/F(s)).

PROOF. Let t' be the product of all primes q dividing v such that T'y # {1}.
Then Xpwy = Xpn), F(t') = F(r), and K(r') = K(t), so the proposition for v
is equivalent to the proposition for t/. Thus we may replace t by t/, i.e., we may
simplify the proof by assuming that T'y # {1} for every q dividing t.

We will prove the proposition by constructing a specific O-basis of X p(). Fix
a set of representatives 41 C Gk of Gal(K(1)/K), and for every prime q dividing
tlet Ay =Ty — {1} C Gal(F(r)/K). For every ideal s dividing v, define a subset
Arps C Gal(F(v)/K) by

Aps = Gal(F(v)/K()Ar [ Aq
primes q|s
~{9rg1 [T 90 9r € Gal(F()/K (). 91 € 41,1 # gq €T}
qls
and then define a finite subset Bp(y) of Xp(y)
Br) = U AFsTrs) C Xp(o)-

s|e

We will show that Bp() is an O-basis of Xp(q).

Clearly AqU{Nq} is an O-basis of O[I'], so Gal(F(r)/K(r)) A1 [ ]s(AqU{Ng})
is an O-basis of O['p(4)]. It follows easily by induction on the number of primes
dividing v that Bp() generates X () over O, since for every q dividing s,

quF(s) = P(Frq_1|T*; Frq_l)mF(s/q)
can be expressed in terms of Zp(s/q) in Xp(r). Further,
Brwl < Ars = [FQ) : K] T[(14q] + 1) = [F(1) : K] [ ITq| = [F(x) : K].
st alr ale
On the other hand, we claim that ranko (X p()) > [F(r) : K. To see this, let

Yr() and Zp(,) be as in Definition 2.1 of Xp(). One can check directly that the
assignment

1y e N,
wroy =TT Mo TL(ITal + (PO 775 ) = Ty %)

al(c/s) s )
induces a well-defined homomorphism from Yz () to O[Gal(#(r)/K)] which is zero
on Zp(y). Thus we obtain a map

¢ : Xp@r) ® ¢ — @[Gal(F(r)/K)].
If x is a character of Gal(F'(r)/K) into an algebraic closure of @, say x has conductor
exactly s, then
w(e(@re)) = [T 1Tl # 0.
ale

It follows that ¢ is surjective, and in particular

rank@(XF(r)) = dim@(XF(r) 29 @) > [F(t) : K] > |BF(r)|

Since Bp(y) generates Xp () over O, we conclude that equality holds, Bp(.) is an
O-basis of Xp(y), Xp(y) is torsion-free, and ¢ is an isomorphism. This proves (i)
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and (ii). Further, since Gal(F(t)/K(t)) permutes the elements of the basis Bp(y),
(iii) follows as well.

The map (1), defined by 2/ (4) + Zp(s), induces a surjective map

Xp/(v) ®olGal(F(v) /)] OlGal(F(v)/K)] = Xp(y).

By (iii) applied to F and F’, this map must be injective as well, which proves (iv).

By (iii), the map (2) induces an isomorphism Xz — Xg?(ls)Fl(t)/F(r)). Also
we see that Bp(s) C Bp(y), so the map Xp5) — Xp(r) is injective and its cokernel
is torsion free. By (ii), Xg?:gF(t)/F(s))/XF(E) is finite, so it must be zero. Now (v)
follows. O

If G is a profinite abelian group, we write O[[G]] = lim O[G/U].

uca

COROLLARY 3.2. IfT' = Gal(Kuo(v)/K(v)) then Xoo . is a free O[[L']]-module
of rank [K(r) : K] and for every K C, F C Koo,
Xoo,r ®0o[[@al(Kw (0)/K))) OlGal(F(v)/K)] = Xp().
PROOF. This is immediate from Proposition 3.1(iii) and (iv). O

LEMMA 3.3. Suppose R is a ring, G is a profinite abelian group, and H is
subgroup of finite index in G. Suppose B is an R[[G]]-module.

(i) Hompgay (B, R[[G]]) = Hompgm) (B, R[[H]]) as R[[H]]-modules.
(ii) If B is free as an R[[H]]-module then Ext}z[[G”(B7 R[[G])) = 0.

Proor. Write S = R[[H]] and S’ = R[[G]]. Fix a set C' C G containing 1 of
coset representatives of G/H. Then C is an S-basis of S/, and we let 7 : $" — §
be the S-module map

Z ayn — ap.

neC
Define a homomorphism Homg/ (B, S’) — Homg(B, S) by composition with 7. One
can check directly that this map is both injective and surjective, which proves (i).
It follows from (i) that Exts, (B, S’) = Extg(B, S), and if B is free over S this
is zero. O

PROPOSITION 3.4. Supposet € R, k>0, and M € O is nonzero.
(i) If KC, F C Ky and G = Gal(F(v)/K), then
Ext(o/m0)ic)(Xpe)/MX @), (O/MO)[G]*) = 0.
(i) If G = Gal(K(v)/K), then
Ext(o/mo)a) (Xoo.t/M X e, (O/MO)[[G]]*) = 0.
PROOF. Apply Lemma 3.3(ii) with R = O/MO and
G = Gal(F(t)/K)v H = {1}7 B = XF(t)/MXF(t)
for (i), and
G=Gal(Kx(v)/K), H=Gal(Kw()/K()), B=ZXo./MXsx,

for (ii). That B is free over R[[H]] is Proposition 3.1(i) and Corollary 3.2, respec-
tively. O
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REMARK 3.5. Alternatively, Proposition 3.4(i) follows immediately from the
fact that (O/MO)|G] is injective (as a module over itself) when G is finite. However,
this is not true for (O/MO)[[Gal(K(v)/K)]].

4. Kolyvagin’s derivative construction

Following Kolyvagin [Ko2], we will associate to an Euler system a collection
of “derivative” classes
Kpen € HY(F,War)
for every nonzero M € O, K C,F C Ko, and t € Rpy (where Rp s is the subset
of R given by Definition 1.1.

DEFINITION 4.1. Fix a generator § of lim p,,», and for every prime q of K not
dividing p fix a prime £ of K above q. We will fix a generator oq of 'y as follows.

Let T denote the inertia group of Q in Gk and let M = |T'y| = [K(q) : K(1)].
Since M is a power of p and q is prime to p, Lemma 1.4.5 shows that 7y has a
unique cyclic quotient of order M, and this quotient is canonically isomorphic to
par- Since I'y itself is a cyclic quotient of Zg, this allows us to identify I'q with
- The chosen generator € gives us a generator ¢ of p,,; we define o4 € I'q to
be the corresponding generator of I'y. (This definition depends on the choices of Q
and £, but we will suppress this dependence from the notation.)

Now define, for every prime q not dividing p,

Dgl-1
D= Y oy €Z[yl.

1=0

If t € R and q | v we view Dy € Z[I';] and define

D, = H Dq € Z[I',].

primes q|t
We have the easy “telescoping” identity
(0q —1)Dq = [Tq| — Ng. (4)

This is the key step in the following lemma, which in turn is crucial for the con-
struction of the derivative classes.

LEMMA 4.2. Suppose K C,F C Koo, M € O is nonzero, and v € Rpa. If
Np@yr € Z[Gal(F(r)/F)] is an element whose restriction to Z[Gal(F'(1)/F)] is

D oeGal(F(1)/F)) Vs then
Nry/rDetpe) € (Xpgo /MXp(r) SEO,
Further, Np(1y/pDex gy is independent of the choice of Np1)/p-
Proor. We will show that
(0 =1)Dexpy € MXpy for every o € Gal(F(r)/F(1)),

and then both assertions of the lemma follow.
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The proof is by induction on the number of primes dividing ¢v. If v = 1, there
is nothing to prove. In general, if q is a prime dividing t, say t = gs, then
(0q =1)Dy = (0q = 1)DgDs = (|l'g| — Nq)Ds
s0, since NyTp(y) = P(Fr;1|T*;Fr;1)xF(5),
(0q — D) Dexp(y = Tq|Dstpy — P(Fr; T Fry ') Do ps)
= |Dq|Dswp(y — P(Fry ' [T*;1) Doy (mod (Frq — 1) Dezps))
=0 (mod MXF(r))

by definition of Ry ps and the induction hypothesis. Since Gal(F'(t)/F(1)) is gen-
erated by the og, this proves the lemma. O

REMARK 4.3. The idea of the construction of the derivative class kg as is
as follows. By Lemma 4.2 (and Lemma 2.3) the image of Np(1)/pDcCp(y) in
HY(F(x),Wyy) is fixed by Gal(F(x)/F). If W¢r® =0 then the restriction map

HY(F, W) — H(F(x), Wy) S F©/F) )

is an isomorphism, and we define kg p € H'(F,Wys) to be the inverse image of
Nr@y/pDeCr(y)-

When WYr 2 0, the map (5) need not be an isomorphism. The rest of this
section will be devoted to showing, using Proposition 3.4 and the universal Euler
system, that the image of Np(1)/pD:Cp(r) always has a canonical inverse image
under (5). That inverse image will be our class kg s (see Definition 4.10). Our
construction will also be quite explicit, so that we can use it to prove the local
properties of the derivative classes which we state in §5 below.

Fix, for the rest of this section, a nonzero M € O.

DEFINITION 4.4. Let Wy, = Ind(W)y) denote the induced module defined (and
called Ind¥% (Wy;)) in Appendix B §4:

{1}
WM = NIZ).pS(GK7 WM),
i.e., continuous maps (not necessarily homomorphisms) from G to Wy, with Gg
acting via
(vf)(g) = f(gy)  forally,g € Gk.

There is a natural G g-module inclusion Wy, < Wy, given by ¢t — (g — gt), and
we will identify W), with a submodule of W, using this inclusion.

PROPOSITION 4.5. For every v € R and every L, KC,L C Ky (t) there is a
canonical map
5p 0 (W /W)t — HY (L, W)
such that
(i) there is an exact sequence

0 — WS — WSF — (War/Wan)St 25 HY(L, W) — 0,

(ii) if f € (War/War)Cr and f € Wy lifts f, then 6.(f) is represented by the
cocycle
Y= (y=1)feWn foryeGr,
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(i) if K LC L' C Koo(t) then the following diagram commutes:

(Woas [Wiag) O (Wag /Wig) Gt 2 (W /WO

Res;/ Corpr/p

]{1(L7 WM) —— Hl(L/, W]\/[) —— Hl(L, WM)
PROOF. By Proposition B.4.5, G-cohomology of the exact sequence
00— Wy — Wy, —>WM/WM —0
gives the exact sequence of (i) and the commutativity of (iii). Assertion (ii) is just
the standard calculation of the connecting map in Galois cohomology, together with
our identification of W), inside W,. O
LEMMA 4.6. Let d = rankop(T), and suppose t € R.

(i) For every K, F C Ko, Wff(") is a free (O/MO)|Gal(F (r)/K)]-module of
rank d.
(ii) Let Ay = O[[Gal(K(r)/K)]]. Then lim Wff(‘) (inverse limit with respect
F

to the norm maps) is a free Ay /M Ac-module of rank d, and if K C; F' C K
m WS @4, O[Gal(F'(x)/K)] = Wir' .
F

ProoFr. Let W](\)/I denote the Z,-module Wy, with trivial action of Gx. Then
there are Galois-equivariant homomorphisms

Wf/f(') = Maps(Gal(F(xv)/K), War) = Home (O[Gal(F(x)/K)], W3;)
= Homp (O[Gal(F(r)/K)],0/MO) @0 W,

Since Wy is free of rank d over O/M O, and Home (O[Gal(F(v)/K)],O0/MO) is
free of rank one over (O/MO)[Gal(F(r)/K)], the lemma follows. O

If v € R we write HY (K (v), W) = lim H'(F(xr), Wy).

K Cf FCKoo
PROPOSITION 4.7. Suppose v € R. Then the maps dp() of Proposition 4.5

induce an exact sequence

0 — Hm Wi — lim (Way /War) S 25 HL (K (x), War) — 0.
F F

Proor. By Lemma 4.6(i), W%F(‘) is finite for every F', K C; F C K. There-
fore taking inverse limits over F' of the exact sequence of Proposition 4.5(i) (with
respect to norm maps for the first three terms and corestriction for the fourth; see
Proposition 4.5(iii)) yields a new exact sequence (see Proposition B.1.1(i))

. Gr(v) . Gr(v)
0 — lmW, " — limW,,
F I

— Tim (W /W) 97 25 HY (K (x), War) — 0.

GF(v)

By Lemma B.3.2, lim W),"*" = 0, and the proposition follows. O



4. KOLYVAGIN’S DERIVATIVE CONSTRUCTION 65
PROPOSITION 4.8. Suppose c is an FEuler system and v € R. There is a family
of O|Gk]-module maps
{dF : XF(t) — (“/VJVI/I/V]\/[)GF(r> : KCfF C KOO}

lifting c, i.e., such that the following diagrams commute

dp
(War/War)©re Xpr () —> (W /W) 9r'
d
/ léﬂt) NF'(r)/F(r)l lNF/M/F(r)
d
Xp(e) —5>= H'(F(x), War) Xp(e) = (War /W) ¥r )

where the bottom map on the left sends xp5) — Cp(s) for all s dividing t as in
Lemma 2.3, and on the right K C,F C,F' C K. These conditions determine each
dr uniquely up to an element of Homo(a,|(Xpy, War).

Proor. We first illustrate the proof in a simplified setting. If WA(/;[F“) =0,

then Proposition 4.5(i) becomes a short exact sequence which (abbreviating R =
(O/MO)[Gal(F(r)/K)] and X py/M = Xp()/MXp(:)) induces an exact sequence

G t
0— HomR(XF(t)/M, WMF< >) — HOIHR(XF(I.)/M’ (WM/W]\/[)GF“))

Sp(e Gp(e
BLAON Homp (X p(o) /M, H' (F(t), War)) — Exth(Xpq) /M, W,/ ).

Lemma 4.6(i) and Proposition 3.4(i) show that Ext (X /M, Wif“)) =0, so we
can choose a map dp lifting c in this case.

In general, since WEF“) may be nonzero, we pass to the limit and use the
short exact sequence of Proposition 4.7 instead of Proposition 4.5(i). Arguing as
above, using Lemma 4.6(ii) and Propositions 4.7 and 3.4(ii), and writing A, =
O[[Gal(K(r)/K)]], we get an exact sequence

0 — Homy, /ara, (Xoo e/ MX oo e, lim WiF)
F
— Homy, /ara, (Xoo,e/MXoo o, lim (Wi /Wiy )97)) (6)
F

61‘
=% Homy, jara, (Xoo,o/MXooe, Hi (K (v), Wa)) — 0.

Therefore there is a map de : Xoo,e — Lim (Wpy /Wiy )9F© such that
F

0.0 dOO({xF(s)}F) = {CF(s)}F
for every s dividing t. We define dr to be the composition
Xp(s) = Koo @a, O[Gal(F(r)/K)]
L=CL i (War/War) 7/ @, O[Gal(F(x)/K)] — (Wag/Way)Sre
F/
where the left-hand isomorphism comes from Corollary 3.2 and the right-hand map
is the natural projection. (Explicitly, dr (2 p(s)) is the projection of doe ({251 (s)}) to
(War/War)Gr© ) Tt is straightforward to check that these maps have the desired
properties. By (6), do is unique up to an element of Homg, (Xoo,t,liLanf(‘)),
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and it follows that dr is well-defined up to an element of Homog, | (Xp (), War)-
O

REMARK 4.9. We will only need to use the existence of the maps dg of Propo-
sition 4.8 for individual F'. The compatibility as F' varies (the right-hand diagram of
the proposition) is needed in order to get the uniqueness portion of the proposition,
i.e., to make the map dr well-defined up to an element of Homoa (X r(x), War).

DEFINITION 4.10. Suppose c is an Euler system, K C,FF C Ko, M € O is
nonzero, and t € R . Fix a map

d=dr: Xpe) — Wy /Wy

lifting ¢ as in Proposition 4.8.

Fix an element Np),p € Z[Gal(F(r)/F)] whose restriction to Gal(F(1)/F) is
2 eGal(F(1)/F)) Y and write

Der = Npqy/pDe.
Lemma 4.2 shows that d(D: pzp(r)) € (War/Wa)9F and we define
KFe,M = 6F(d(Dr7F37F(t))) S Hl(F7 War).
We can describe this definition with the following diagram

d(D: rrpr) € (WM/WM)GF<‘>ng(F(t),WM) 5 Dyrepg

e

d(Deprr@) € (Wa/Wa)6r — "= H'(F,Wy) >  Fren

. J

where the commutativity of the inner square is part of Proposition 4.5(iii).

REMARK 4.11. The definition of kg, as is independent of the choice of N1y, r,
since by Lemma 4.2, D pxpe) € Xp(r) /MXF(r) is independent of this choice. The
definition is also independent the choice of d in Proposition 4.8. For if d’ is any
other choice, then d —d’ € Homg, (Xp(), Was), so by Lemma 4.2 and Proposition
4.5(1),

d(D: pxpr)) —d'(Dyprpe)) € image((Wys)97) = ker(67).

Also, note that the definition of kp s depends only on the images of the
classes {Cp(s) : § | t} in H'(F(r), Was). See Chapter IX §3 for a further discussion
in this direction.

For the next two lemmas, suppose c is an Euler system, K C, F C K, M € O
is nonzero, and v € R ) as in Definition 4.10.

LEMMA 4.12. Suppose d : Xpy — Wi /Wiy is a lifting of the Euler system c
as in Proposition 4.8. Let f € Wy be any lifting of d(De,rxp(:)). Then kpen is
represented by the cocycle

Y= (y=1)f € Wi
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Proor. This is a combination of the definition of Kz s above with the explicit
description of the connecting map ér (Proposition 4.5(ii)). O

LEMMA 4.13. (i) The class k1w is the image of cp in H (F, Wyy).
(ii) The restriction of kg to F(x) is the image of Dy pep () in H' (F(t), Wy).
(i) If M | M' and v € Rp p then under the natural maps we have

Hl(F,W]\/[/)HHl(F,WM) Hl(F,WM)HHl(F,WM/)
KFe M — > KF e M KFe,M ——— (M’ /M)t p 01

PRrooOF. All three assertions follow from Definition 4.10. For the first we take
t=1, D r = Npq)/r, and use Proposition 4.5(iii) and the Euler system relation
Corp(l)/FcF(l) = Cp. O

5. Local properties of the derivative classes

Fix an Euler system c for 7. In this section we will state the main results
describing the local behavior of the derivative classes kp. s of §4. We will see
(Theorem 5.1) that kg ar belongs to the Selmer group S>(F, W) where ¥ is the
set of primes dividing pr. At primes dividing v, kKp. as Will in general be ramified,
and understanding this ramification (Theorem 5.4) is crucial for the applications.

The proofs will be given in the remaining sections of this chapter.

THEOREM 5.1. Suppose K C, F C Koo, M € O is nonzero, and ¢ € Rp . If
w is a place of F not dividing pt then

(KF,t,M)w S Hl(FuHWM)'
f

FEquivalently,
Kren € S7r(F, W)

where Y, is the set of primes of K dividing pr.
Theorem 5.1 will be proved in §6.

LEMMA 5.2. Suppose M € O is nonzero and q € Ry a. Then there is a unique
Qq(z) € (O/MO)[x] such that P(Frq_1|T*;:1c) = (2 —1)Qq(x) (mod M).

PRrROOF. Take

P(Fr, ' |T*;2) — P(Fr'|T*;1)

r—1

Qq(z) =

Since M divides P(Fr, '|7*;1) this polynomial has the desired property, and the
uniqueness comes from the fact that x — 1 is not a zero divisor in (O/MO)[z]. O

DEFINITION 5.3. Suppose M € O is nonzero and q € Rg,». The choices of
oq € T'y (Definition 4.1) and Fr, depend on the choice of a prime Q of K above q.
We use the same choice for both, and we further fix ¢4 in the inertia group of Q
extending oy.
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By Lemma 1.4.7(i) (which applies thanks to Lemma 1.2(i)) there are well-
defined isomorphisms
gt HN(Kq, War) =5 Wy~
Bt Hy(Kq, War) = Wy /(Frg — 1) Wy
given on cocycles by

aq(c) = c(ay), By(c) = c(Frq)

If g € R m, then P(Fr;l\T*; Fr;l) annihilates Wjs by Lemma 1.2(iv). Thus the
polynomial ()4 of Lemma 5.2 induces a map

Qq(Fry ") : Wir/(Frg — 1)Way — Wy
We define the “finite-singular comparison” map
ol Hy(Kq, W) — HY(Kq, W)
to be the composition

Qq(Fry?)
_

HY(Kq, War) 2% War/(Frg — 1)Way wita=t 2 gL K, W)

If KC,F C Ky and q € Rp,u, then Fq = K, and we can view ¢£S as a map from
H}(Fq, W) to Hi(Fq,Wyr). We will still write ¢1® in this case, and suppress
the dependence on Q.

THEOREM 5.4. Suppose K C, F C Koo, M € O is nonzero, and tq € Rp -
If (b;’;s 1s the map defined above, and (HF,tq,M); denotes the image of Kpeq,m N
Hsl(FQ, WM), then

(HF,tq,M): = (bgs (K/F,t,M)~

In other words, the singular part of kKpqar at q is controlled by the (finite)
localization of kp . ar at . Theorem 5.4 will be proved in §7.

COROLLARY 5.5. Suppose 0 # M € O, vq € Ri,m, and Wy /(Frqg — 1)Wiy
is free of rank one over O/MO. Then the order of (K qm)5 in Hi(Kq, War) is
equal to the order of (ki e,m)q 0 H}(Kq,WM).

Proor. The maps oy and 3y in Definition 5.3 are isomorphisms, and by
Lemma 1.2(iii) and Corollary A.2.7 (applied with 7 = Frq_1 and Q(z) = Qq4(x)), so
is the map Qq(Frgl). Thus (;Sé,f % is an isomorphism and the corollary follows from
Theorem 5.4. O

6. Local behavior at primes not dividing pt

Fix for this section an Euler system c for T" and a nonzero M € O. If
KC, FCKx,t € Rpum, and w is a place of F' not dividing pr, we need to show
that (kp,ea)w € Hp(Fy, War). When w is archimedean (Lemma 6.3), or when w
is nonarchimedean and T is unramified at w (Corollary 6.2(ii)), this is not difficult.
We treat those cases first, and then go on to the general case.
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PROPOSITION 6.1. If KC,F C Koo, v € R, and Q is a prime of F(tr) not
dividing p, then for every v € G,

(VCF(t))Q € H&r(F(t)QaT)a (’}/EF(t))Q € Hl_llr(F(t)Q7WM)
where Sy is the image of cp(yy under the map H*(F(v),T) — H'(F(xr), Wyy).

PROOF. Since {ycp)}r € HL (K(x),T), this is immediate from Corollary
B.3.4. O

COROLLARY 6.2. Suppose K C,F C Ko, t € Rpm, and Q is a prime of F
not dividing pr.

(i) (krear)o € Hy(Fo, War).
(il) If T is unramified at Q then (kp.ar)o € Hp(Fo, War).

Proor. Let D, r be as in Definition 4.10 and write Z for an inertia group of
Q in Gp. Since F(r)/F is unramified at Q, Z C Gp(y), so by Lemma 4.13(ii) the
restriction of Kp a to Z is equal to the image of D pcp(y) in HYZ,Wy). By
Proposition 6.1, the latter is zero. This shows that (kp.a)o € HL (Fo, W),
and if T is unramified at Q then Lemma 1.3.8(ii) shows that H}(FQ,WM) =
H&r (FQa WM) O

LEMMA 6.3. Suppose K C, F C K, t € Rrm, and w is an infinite place of
F. Then (FCF,t,JW)w S H}(FM,WM).

PRrROOF. Let @ be a place of F(r) above w. Since F(t)/F ramifies only at
primes dividing v, w splits completely in F'(t)/F. Thus Lemma 4.13(ii) shows that
(KF,e,m)w is the image of (D¢ rep(r))s under the map

HYF(t)g,T) = H'(Fy,,T) — H"(Fy, Wa).

By Remark 1.3.7, H}(Fy,T) = H'(F,,T) so the lemma follows from Lemma
1.3.8(i). O

REMARK 6.4. In the nonarchimedean case, if w is a prime of K not dividing
pr, then Corollary 6.2(i) shows that (krc.a)w € HE (Fuw, War). Unfortunately, for
primes where T' is ramified it may not be true that H} (Fus W) = HY (Fo, War).
However, we do get immediately the following corollary, with only a slightly stronger
assumption on t.

COROLLARY 6.5. There is a positive integer m, independent of M, such that
for every K C, F C Ko, every v € Ry am, and every prime Q of F' not dividing
pr, (krem)o € Hp(Fo, War).

PROOF. Let
m= sup [WIC' : (WIq)diV]

primes q of K
atp

where Z; is an inertia group for q in Gi. Clearly m is finite, since these indices are
all finite and almost all equal to 1. If K C, FF C K, Q is a prime of F' not dividing
p, and q is the prime of K below Q, then 7 is also an inertia group of Q in
Gr. Therefore by Lemma 1.3.5(iii), m annihilates Hy, (Fo, Warm)/H {(Fo, Warm),
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so by Corollary 6.2, (mKpe mm)o € H}c (Fo,Warm). Lemma 4.13(iii) shows that
MEKF,Mm 18 the image of kg a7, and the corollary follows. O

Corollary 6.5 is already strong enough to use in place of Theorem 5.1 in proving
the Theorems of Chapter II. So one could skip the rest of this section if one is so
inclined.

To prove Theorem 5.1 for primes Q where 7" may be ramified is much more
delicate. We will mimic the construction of kg, locally, and use Proposition
6.1 to show that (kp.a)o can be constructed inside H'(Fg,T%2/MTZe). The
theorem will follow quickly from this.

DEFINITION 6.6. Fix t € R and a prime q of K not dividing pt. Fix an inertia
and decomposition group Z C D C Gk of q. If L is a finite extension of K,
unramified at q, let Sz, denote the set of primes of L above q and abbreviate

H'(Lg, W) = @ H'(Lo, Wn),
QeSL
Hi(Lo, T2 MTY) = @) Hi(Lo,T% /MT)
QeSL
where for each Q € S, Zg is the inertia group of Lg. (Since L/K is unramified
at q, each Zg is conjugate to Z.) Write ( - )q or resq : H*(L,Was) — H(Lg, W)
for the sum of the restriction maps. Note that H'(Ly, Was) and H'(Lq, T /MT?)

are Gal(L/K)-modules: this can be seen directly (every o € Gal(L/K) induces an
isomorphism

H'(Lo,T% /MT™®) < H'(Lyo,0(I7 [MT™®)) = H'(L,o,T%° /MT™2)

for every Q, and summing these maps over Q € Sy gives an automorphism of
HY(Lq, T* /MT?) and similarly for H*(Ly, Was)), or see Proposition B.5.2.
Write

Wi, = T% /MT* = (WH)qiw)m € (War)* € Wy
and define
W/, = Ind(W{,) = Maps(Gr, W{,) € Wy,

As in Appendix B §4, let Indp(Wjs) C W, denote the subgroup of maps satisfying
f(hg) = hf(g) for every h € D, and similarly for IndD(WX}) C ijvr
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LEMMA 6.7. For every K C; F C K, with notation as above we have a natural
commutative diagram with exact columns

0 0 0

nC 000 o e
WJ\(/;[F( ) HO(F(t)q, W) HO(F(v)q, Wiy)

Wy Wi (W},)Cre
(Wag /Wiar)¥r) —— (W /Indp(Way))GF) <—— (W, /Indp (W) Ere

Sr(e) Sr(e)q Spcerg. W,

resq

H'(F(x), Was) HY(F(v)q, W{,)

H(F(t)q, War)

0 0 0

ProoF. The three columns come from Gp(;)-cohomology of the short exact
sequences
00— Wy — Wy, —>WM/WM—>O
0— IndD(WM) I WM — WM/IndD(W]w) — 0
0 — Indp(W{,) — Wi, — W/ /Indp(W},) — 0
respectively (the left-hand column is Proposition 4.5(i)), using Corollary B.4.4 and

Proposition B.5.2. The horizontal arrows are the natural ones, and the commuta-
tivity follows from the functoriality of all the maps involved. O

We now need the following local analogue of Proposition 4.8.

PROPOSITION 6.8. Suppose ¢ is an Fuler system and v € R. There are two
families of O[G k]-module maps

{drq : Xp@) — (Wi /Indp (W) 970t KC F C Koo}
{df, : X = (W], /Indp (W) 7ot K F C Koo}
lifting c, i.e., such that if K, FC, F' C Ko,

(i) the maps dp,q (resp d£7q) are compatible with respect to the norm maps

Xy = Xpgy,  (Way/Indp (W) G5/ — (W /Indp (W) Fr),
(Wﬂ/IndD(Wx}))Gwm — (Wﬂ/lndD(WJ{;))GF(‘),



72 IV. DERIVED COHOMOLOGY CLASSES

(ii) for every K C,F C K and every s dividing ¢, the compositions

6r(v)q
e

dF.q
Xpe) — (War/Indp(Way))Cre H(F(x)q, War)

df
Xp@ey —5 (W4, /Indp(W{,))%re

é
F(e)q. Wi,

H'(F(x)q, Wiy)
both send xp(g) to (Cps))q-

Each dr,q is determined uniquely up to an element of Homog,1(Xp), War), and
each d?q up to Hom@[GK](XF(t),W{W), by these two conditions.

PROOF. For each K C, F C K we have maps (see Lemma 2.3)
Tpi) Cr(s) > (Cr(s))q

Xpey —— HYF(),T) —— HY (F(x),,T)

l l (7)
HY(F(v),Wy) —— HYF(t)q, Wr).
By Proposition 6.1, for every s dividing v and every Q € Sp(y),
(cr(e))e € Hu(F(v)o,T) = H(F(t)§/F(v)o, T*®) C H'(F(t)o,T7°)
so the map Xpy — H'(F(t)q, Wa) in (7) factors through a G g-equivariant map
X (o) = H'(F(t)q, W) (8)

To prove the proposition we need to lift these to maps Xp) — Was/Indp(War)
and Xp() — W{VI /IndD(WI{/I) in the center and right-hand columns, respectively,
of the diagram of Lemma 6.7. We will do this by mimicking the proof of Proposition
4.8. We describe the proof only for the right-hand column; the other proof is exactly
the same (and see Remark 6.9 below).

Since we have assumed that the decomposition group of ¢ in K, /K is infinite,
we can find a Z,-extension K/ of K in K., such that K/  has only finitely many
primes above q. Then for each finite extension L of K, Uk ¢, FcKéCLHO(F(t)q, War)
is a finitely-generated Zj,-module, so by Lemma B.3.2,

lim H°(F(t)q, Wn) = lim lim  H(F(t)q, War) =0
K Cf FCKoo K LKoo KLCf;EKéOL

(inverse limits with respect to the norm maps). Proposition B.2.7(ii) shows that
each H'(F(v)q, W) is finite, so exactly as in Lemma 4.7 the inverse limit over
K C, F C K of the right-hand column of the diagram of Lemma 6.7 is a short
exact sequence

0 — lim (W4,)97) — lim (W}, /Indp (W,))5F ) — lim ' (F(e), W) — 0.
F F F

The maps (8) induce a map

Xoo,e — lim HY(F(v)q, W),
F

and exactly as in Lemma 4.6, lim (W{/I)GFU) is a free (O/MO)[[Gal(K(v)/K)])-
module. As in Proposition 4.8, Proposition 3.4 now shows that this map lifts to a
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map
Xoo,r — 1‘17111 (W{W/IndD(WJQ))GF(G .
F

Also as in Proposition 4.8, Corollary 3.2 shows that this in turn induces maps
df Xy = (W, /Indp (W) G

having the desired properties. The uniqueness is clear from the diagram of Lemma
6.7. O

REMARK 6.9. To construct the maps dg, in Proposition 6.8 it is enough to
construct either the global maps dp of Proposition 4.8 or the “unramified” maps
dgq of Proposition 6.8 and then map them into (W /Indp(Was))¥F® using the
diagram of Lemma 6.7.

In fact, that is how our proof of Theorem 5.1 will proceed. We construct the
maps dp and d? o lifting our Euler system c. This gives us two different construc-
tions of dry and we compare them using the uniqueness assertion of Proposition
6.8.

PROOF OF THEOREM b5.1. Keep the notation from the beginning of this sec-
tion, so M € O is nonzero and we now suppose that v € Rpy. Fix a lift
d: Xpwe) — Wi /Wiy (resp. dﬂ,c C Xpe) — W{V[/IndD(WJ{})) of ¢ as in Propo-
sition 4.8 (resp. Proposition 6.8). Write dy (resp dj) for the image of d (resp dg)
in Hom(X gy, Wi /Indp(Way)) in the diagram of Lemma 6.7. From the unique-
ness portion of Proposition 6.8 it follows that

. Gre
dy —d; € image(Hom(X p(¢), Wy, ™))

In particular, Lemma 4.2 shows that, in the center column of the diagram of Lemma
6.7,
dg(De rpy) — dy(De pzp) € image(WSF) = ker(0p, ).
By definition, £ ,p = dp(d(De,r2p(r))). Therefore we see from the diagram
of Lemma 6.7 that (K¢ ar)q is equal to the image of dg (De,prp()) in HY(Fy,Wa).
In particular we conclude that for every prime Q of F' above q,

(kre)o € image(H' (Fo, T™ /MT*?) — H' (Fg, Wy)).
By Corollary 6.2(i), we also have that
(hrean)o € HY(F(®)0, War) = H'(F(0)5/F(t)0, WEE)
and it follows that
(Kren)o € image(H' (F(x)§ /Fo,T" /MT?®) — H'(Fo, Wr)).
Since Gal(Fg"/Fg) has cohomological dimension one, cohomology of the short exact
sequence
0— 7% X 77e 770 /770 0

gives a surjective map

Hy,(Fo,T) = H'(F& /Fo,T"®) — H'(F& /Fo,T"® /MT?2).
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Thus we conclude finally that (k. ar)o belongs to the image of HL (Fg,T), so by
Lemmas 1.3.5(ii) and 1.3.8(i),

(kren)o € Hi(Fo, War). O
7. Local behavior at primes dividing ¢

Fix for this section an Euler system c for T', a nonzero M € O, a prime q € R,
teR,and KC, F C K.

Fix a prime Q of K above q and let Z C D be the inertia and decomposition
group, respectively, of Q in Gk . Since K(q)/K (1) is totally ramified at g, Z projects
onto I'y, so we can choose a lift of o4 to Z which we will also denote by 4. With
this choice we will view

(K (q):K (D] [K(a):K(D]-1
Ny = ol, Dg= Y o, €2,
=1 =0

but, writing m = [K(q) : K(1)], we no longer have oy =1 in Z, so instead of the
identity (4) we have

(0q —1)Dg = mog" — Ng 9)

in Z[Z]. Fix also some choice Fry € D of Frobenius for 9, and fix a lift of the
element Np(1)/p of Definition 4.10 to Z[G ], so that we can view Dy r € Z[GF].

LEMMA 7.1. Suppose d : Xy — Wi /Wy is a lifting of ¢ as in Proposition
4.8, and a(xp(t)) € Wy is a lift of d(xp(y)). For everyy € Gi and 0,0' € D,

UU/Wa(JfF(:)) = U/U'Ya(xF(t))'

PROOF. Let Ip() = Z N Gp(y). Since T is unramified at q, Proposition 6.1
shows that
restm (fYCF(t)) =0 in Hl(IF(t), WM) = HOm(IF(t), WM)
Thus every cocycle representing ycp () vanishes on Zp(,). In particular by Propo-
sition 4.5(i),
(0 — 1)761(9@@) =0 in Wyy, for every o € Ip(). (10)
Since D/Z and Gal(F(r)/K) are abelian, the commutator subgroup of D is con-
tained in both Z and G'p(y). In particular if we apply (10) with o = o lo' oo’ €
Tp(x), the lemma follows. O

REMARK 7.2. Suppose in Lemma 7.1 that o,¢’ belong to Gk, but not neces-
sarily to D. Then oo'd(zp()) = o'od(zp()) since d is Gg-equivariant and the
action of Gx on xp(.) factors through an abelian extension of K. However, the
action of G on d(z F(x)) Will not in general factor through an abelian extension
of K so it is not in general true that oa’(](xF(t)) = o’aa(xp(t)). However, Lemma
7.1 shows that this does hold if o,0’ € D. We will use this repeatedly below.

Note that Lemma 7.1 applies whether or not q divides t.

The following lemma is essentially equivalent to Theorem 5.4, which will follow
easily from it.
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LEMMA 7.3. Supposet € R, q € Ry, m does not divide v, and K C, F C K.
Fiz a lifting d : Xpq) — War/War of ¢ as in Proposition 4.8, and fix liftings

a(xp(rq)),&(xp(t)) € Wy of d(zpeq)) and d(zp(y)), respectively. Then for every
v € Gk,

qua(:ﬂF(tq)) = P(Fr;1|T*; Frch)'ya(zF(t))'
Proor. We will abbreviate Py(z) = P(Frq_l\T*; z). Note that
Ngvd(2p(eq)) = Py(Fry )vd(zp (o)

since d is G g-equivariant and NqZp(eq) = Py (Frq*l)xp(t), SO

Nyyd(zp(eq)) — Po(Fry Dyd(2pe)) € War.

First we show that the image of Nq'ya(xp(tq)) - P, (Fr;l)'ya(xp(t)) in Wyy is
independent of the choices of d and d. Suppose we replace d by another choice
d’. By Proposition 4.8, d’ = d + dg with dg € Homg, (Xp(xq), Was). Therefore if
we choose lifts &’(xF(tq)),&’(xF(r)) € Wy of d'(2p(q)) and d'(zp()), they must
satisfy

&/(xF(tC[)) = a('rF(rq)) + dO(xF(tq)) +t, a/(JZF(t)) = a(xF(t)) + dO(xF(t)) +
where t,t' € Wjs. Thus

(Ngvd'(Zp(eq)) — Pq (qu_l)Vd/(xF(t))) — (Ngvd(ZF(eq)) — Pq(Frch)Wd(l‘F(r)))
= do(y(Ngwp(xq) = Pa(Frg )op()) + Novt — Py (Fry )yt
= Ngyt — P, (Frq_l)wt/
since dg is G g-equivariant. This is zero because o fixes Wy, M | [K(q) : K], and
P, (Frq_l) annihilates W), (Lemma 1.2(iv)).

Next we will make a useful choice of d(xp(t)) and d(a:F(tq)). Choose k € Z+
so that Fr]; is the identity on both F'(vq) and W, and let k, be the largest power
of p dividing k. Since the decomposition group of q in Gal(K/K) is infinite, we
can fix a finite extension F’ of F' in K, such that the decomposition group of ¢ in
F'(vq)/F(rq) has order divisible by k,M. Choose a lift d : Xp/(cq) — War /Wiy of
c as in Proposition 4.8.

Let H C Gal(F'(tq)/F(tq)) be the subgroup generated by Fr';. Fix a subset
B C Gp(xq) Which is a set of coset representatives of Gal(F"(vq)/F(tq))/H. Write

|H|-1

N'=> B, N'=) 8 €ZGrqq
i=0 B€EB

The product N'N” restricts to the norm from F’(tq) to F(trq), so in particular
N/N//:CF'(rq) = TF(vq) and N/N”IF/(t) = TF(v) (11)
n XF’(tq)'

Choose liftings cAi(xF/(tq)), a(l'F/(t)) € Wy of d(zpr(rq)), d(pr(v)) € War /W,
respectively, and define

d(@r(q) =7 'N'Nd(@p ) d@pe) =77 NN Yd(2p(o)-
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It follows from (11) that these are lifts of d(xp(q)) and d(zp(y)), respectively, to
Was. We will show that with these choices qua(mp(t)) - P, (Frq_l)'y&(xp(tq)) =0,
which will prove the lemma.

Note that N’, P, (Frq_l), and Ny all belong to O[D] because Frq and o4 do,

so by Lemma 7.1 these elements commute in their action on N”~d(x F(xq)) and
N”’ya(:vF/(t)). Thus

quya(xF(t))ipq (Frqil)’yd(mF(tq))
= NgN'N"7d(2 1 (cq)) — Po(Fry )N'N"yd (21 (r))
= N'(NqN//’yd(xF/(tq)) — Pq (Fr;l)N//'ya(xF/(t))) S NIWM,

the final inclusion because NqN”v(?l(xF/(tq)) - P, (Frq_l)N”vél(a:F/(r)) € W pro-
jects to N"yd(Nqz pr(cq) — Py (Frq_l)mp/(t)) =0 in Wy, /Wy,. Since Fr’; fixes Wy,

N/WM C |H| War.

Now observe that H has index dividing k, in the decomposition group of ¢ in
F'(xq)/F(xq), so in particular M divides |H|. This completes the proof. O

PROOF OF THEOREM 5.4. Keep the notation from the beginning of this sec-
tion, and suppose now that tq € Rg . Choose Qq € O[z] as in Lemma 5.2, so that
Qq(z)(x—1) = P(Frq_1|T*;x) (mod M) . To prove the theorem we need to show
that, for some (or equivalently, for every) choice of cocycles representing Kk . s and
RFvq,M,

Qq(Frg e (Frg) = peq,n(0q) € W

Fix d : Xp(q) — Wi /Wiy lifting ¢ as in Proposition 4.8, and choose liftings
d(xF(t)), a(xF(tq)) € Wy of d(xp(r)), d(Tp(eq)) € War/ Wiy, respectively. Lemma
4.12 shows that

krem(Frg) = (Frg — 1)De pd(2p ) € W
Kpeqm(0q) = (0q — 1) Deq pd(2p(eq)) € Wt
Also
Qq(Frg ) (Fryt — Vg (Frg) = P(Fry T Fry Y kpear (Frg) = 0

by Lemma 1.2(iv). Thus, using Lemma 7.1 repeatedly to commute elements of
O[D], and using (9), we see

Qq(Frq_l)ﬁF7t7M(Fr )
= Qq(chT )FrglﬁF,t,M(Frq) — Kpq,M(0g)
)Frg

= Qq(Fry")Fr; " (Frq — 1) D, pd(z()) — (0q — 1) DDy pd (2 p(eq))

= —P(Fr |7 Fry ) De pd(w () + Ny Do pd(Tp(eq))

— [K(q) : K)oV DIID, pd(@peq))-

Since q € Rp,p we have M | [K(q) : K(1)]. Thus by Lemma 7.3 we conclude that
Qq(Frgl)nF,t7M(Frq) — KFeqm(0q) =0 in Wiy, as desired. O

q) = KF,eq,M(0q)
1
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8. The congruence

Although we will not need it, we can now prove the following corollary (the
“congruence condition” for an Euler system) which was promised in Remark II.1.5.
We again abbreviate Py(z) = P(Frq_1|T*; x).

COROLLARY 8.1. Suppose c is an Euler system for T, K C;F C Ky, g € R is
prime, and vq € R. Then for every prime Q of F(vq) dividing q,

P, (FroY) — Py(N(q)Fr; !
(CF(tq))Q = CI( q[;(q) qé(f;) 1 )(CF(t))Q € Hl(F(tq)Q7T>'

PrROOF. Write

Since [K(q) : K(1)] divides (N(q) — 1), R(z) € O|z].

Keep the notation and setting from the beginning of the previous section, and

let

¢ =cCp(q) — R(Fryepw) € H (F(xq), T).
For every nonzero M € O let (¢)o,a be the image of ¢ in H'(F(rq)g, War). By
Proposition B.2.3, H'(F(xq)o,T) = lim H'(F(tq)o, War), so to prove the corollary
it will suffice to show that (¢)g ar = 0 for every M.

Fix an M divisible by [K(q) : K(1)], and a lifting d : Xp(eq) — War/War
of ¢ as in Proposition 4.8. Choose elements &(xp(t))ﬂ(a:F(rq)) € Wy, lifting
d(zp@)), d(Tpeq) € Wi /Wy, respectively. Fix a Frobenius element Fry cor-
responding to a prime of K above Q. Then a Frobenius element for Q in G F(eq) 18
given by ¢ = Fr} for some k. By Proposition 6.1, (¢)o,n € H(F(xq)o, Way), and
by Lemma 1.3.2(i) there is an isomorphism

Hy(F(ta)o, W) —  Wu/(p—1)Wy
(c)o,m > c(p).

Proposition 4.5(ii) shows that v +— (y — 1)(a(mp(rq)) - R(Frq_l)a(mp(t))) € Wy is
a cocycle representing (¢)g, ar, S0

(om=0 < (p— 1)(a(xp(tq)) — R(Frq_l)a(mp(t))) € (p—1)Wyy.

Note that (¢ — 1)d(zp)), (¢ — 1)d(zprq)) € War and Ny, ¢ — 1, Py (Frq_l) €
O[D]. Therefore
5 (a) : K(D)](p = D(d(@r(q) — R(E Hd(@re))
= Ny(p = D)d(2p(eq) — Py(Fry )@ — Dd(zpw))
= (p = D(Ngd(xp(eq)) = Po(FryHd(zr(r))

the first equality since o4 fixes Wiy and Py(N(q)Fr, ') annihilates W), (Lemma
1.2(ii)), and the second by Lemma 7.1. Lemma 7.3 shows that the image of
Nod(2p(q)) — Py (Fr;l)d(:cp(t)) under the projection Was — Wik (q):x(1)] 1 zero,

and we conclude that

[ (a) : K(D)](e = 1)(d(@req) — REr; Dd(2re)) € [K(a) - K(1)](0 — )War.
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It follows that (c)o ar/[x (q): k(1)) = 0, and since this holds for every M the corollary
is proved. O

ExXAMPLE 8.2. Suppose T' = Z,(1). Then for every v € R and every prime Q
of F(t) not dividing p (see Example 1.2.1)

H'(F(1),T) = (F(t)), H'(F(t)o.T) = (F(1)}3) 2 k3 ® Z,

where (- )" denotes the p-adic completion and kg is the residue field of F'(t) modulo
Q. In this case
Py(x) = det(1 — Frq_1x|Zp) =1-ux,
0
Py(Fry ) — Py(N(@)Fry ") _ N(g) -1
[K(q) : K] [K(a): K]
Thus viewing cp(.), Cp(q) € (F/(r)*)", Corollary 8.1 in this case says

N(a)—1 p.—1
c /C [K(q):K]""a
F(rq)/ “F(v)

has order prime to p in ké. (This can be viewed as the “p-part” of a hypothetical

congruence
N(a)—1 -1

Crien) = Cpi) | (mod Q).)
For the Euler system of cyclotomic units discussed in Chapter III §2; Corollary 8.1
is a reflection of the congruence
F‘I‘71
1- er =1- Cr ?

modulo every prime above ¢ (which in turn follows from the observation ¢, = 1).



CHAPTER V
Bounding the Selmer group

In this chapter we will prove Theorems I1.2.2 (in §2) and I1.2.3 (in §3). For every
power M of p we will choose inductively a finite subset ¥ of primes in Rx . As
v runs through products of primes in 3, Theorem IV.5.1 shows that the derivative
cohomology classes kx ¢, p defined in Chapter IV belong to S§¥Y%e (K, Wyy), where
YJp is the set of primes of K above p, and Theorem IV.5.4 tells us about the singular
parts of these classes at primes in 3. This information and the duality results of
Chapter I §7 will allow us to bound the index [Sx, (K, W73;) : Ssus, (K, Wi,)]. By
taking ¥ large enough so that Ssus, (K, Wy;) = 0, and letting M go to infinity, we
will obtain the bound of Theorem I1.2.2.

1. Preliminaries

Keep the notation of Chapter II §1 and §2. Fix an Euler system c for (T, K, )
for some K and N. If M is a power of p we will write Ry = R a (as defined in
Definition IV.1.1), the set of ideals in R divisible only by primes q such that ¢ t A,
M | [K(q) : K], M | P(Frq_1|T*;1)7 and q splits completely in K(1). If vt € Ry,
then ke v € H LK, W) will denote the derivative class & K.t,M defined in Chapter
IV &4.

Recall p is the maximal ideal of O. If B is an O-module and b € B, define

order(b, B) = inf{n > 0:p"b =0} < oo,

the exponent of the smallest power of p which annihilates b. Recall that £»(B)
denotes the length of B as an O-module, and (Definition I1.2.1) indp(c) is the
largest integer n such that cx is divisible by p™ in H*(K,T)/H (K, T)ors. We will
suppose that indp(c) is finite, or else there is nothing to prove.

If M € O is nonzero, we let vy : H (K, Wys) — H'(K,W) denote the map in-
duced by the inclusion of Wy, in W. If L is an extension of K and n € H' (K, W},),
we write (), for the restriction of i to L, and similarly with W), in place of W7;.

LEMMA 1.1. Suppose M is a power of p and ord, M > indp(c). Then
order(¢ar(k1,0r), H (K, W)) = ordy M — indo(c).
PrROOF. Lemma IV.4.13(i) shows that ¢ps(k1,0s) is the image of cx under the
composition
Hl(KaT) - Hl(Ka WM) - HI(K,W),
and by Lemma 1.2.2(iii) the kernel of this composition is M H* (K, T)+H (K, T )tors,
S0

order(tpr (k1. ar), HY (K, W)) = order(cg, H' (K, T)/(MH"(K,T) + H* (K, T)tors)-

79
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Since HY(K,T)/H (K, T)1ors is a torsion-free O-module, it follows from the defi-
nition (Definition I1.2.1) of indp(c) that

order(cx, H (K, T)/(MH"(K,T) + H (K, T)tors)) = ord, M — indo (c).

This proves the lemma. O

2. Bounding the order of the Selmer group

We divide the proof of Theorem II.2.2 into two main steps. The first step
(Lemma 2.3) is to produce inductively a sequence of primes of K with useful prop-
erties. The second step (Lemma 2.5) is to show that the Kolyvagin derivative
classes we construct with these primes generate a subgroup which has large image
when we localize to the singular part of the cohomology groups. Once this is ac-
complished, we only have to plug this information into Theorem 1.7.3, the global
duality theorem, and we obtain the desired bound.

Suppose throughout this section that p > 2 and that T satisfies hypotheses
Hyp(K,T). Fix a 7 € Gk as in hypothesis Hyp(K,T)(i), i.e., 7 € GK(l)(”pOO) and
T/(t — 1)T is free of rank one over O. As a consequence, for every power M of p
we have O-module isomorphisms

War/(t — D)Wy 2 O0/MO, Wi /(t—1)Wi £ 0/MO.

LEMMA 2.1. Fiz a power M of p. Suppose L is a Galois extension of K such
that G, acts trivially on Wy and on Wy, If

ReHl(Kva)7 neHl(KaW]T/I)

then there is an element v € G, satisfying

(i) order(k(y7), War /(T — 1)Was)) > order((k)r, H (L, War)),
(i) order((y7), Wiy /(7 — 1)W3p) = order((n)z., HY (L, Wp)).

PrOOF. First observe that for v € G, the image of k(y7) in Wy /(7 — 1)Was
is well-defined independent of the choice of cocycle representing x, and

k(y7) = k() + k(1) (mod (T —1)War) (1)
and similarly for 7.
Define
B, ={y € Gy, : order(k(y7), War /(T — )W) < order((k)r, Hom(Gp, W)}
B, = {v € G, : order(n(y7), Wy, /(T — 1)W3;) < order((n)r, Hom(Gr, Wy,))}.
Every v € G — (B, U B,) satisfies the conclusions of the lemma, so we need only

show that B, U B, is a proper subset of Gp.
Define a subgroup J of G by

J ={y € Gy :order(k(y), Wy /(T — )W) < order((k)r, Hom(Gpr, War))}.

By (1), if 4,7’ € B, then v~/ € J. Therefore B, is either empty or is a coset of
J.
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Write d = order((k)r,, Hom(Gp, Wys)), and consider the image x(Gp) of k on
Gp. Since (k) € Hom(Gp, Wy )G/ K)

Y(w(h)) = k(yhy ™)
for every h € G, v € Gk, and so k(Gr) is a G-stable submodule of W4, not
contained in Wya-1. By hypothesis Hyp(K,T)(ii), W, = T ® k is irreducible so
p?~1k(GL) = W, and therefore k(G ) = Wya. Since Wy /(1 — 1)Wy = O/MO,

H(J) C Wpd—l + (T — 1)W]y[ ; Wpd = H(GL)

and we conclude that J has index at least p in Gp.

In exactly the same way, B, is either empty or is a coset of a subgroup of G,
of index at least p. Since p > 2, B, U B,, cannot equal G'r,. This completes the
proof. O

REMARK 2.2. The end of the previous proof is the only place where we need
the assumption that p > 2 in Theorem I1.2.2.

Let
Q= KW)K(DE (s, 0377)
where K (W) denotes the smallest extension of K such that Gx(w) acts trivially
on W. Note that Gq acts trivially on W* as well.

LEMMA 2.3. Fiz a power M of p. Suppose C is a finite subset of H' (K, W3;)
and let k = |C|.
Then there is a finite set & = {q1,... ,_qk} of primes of K satisfying the fol-
lowing properties. If 0 <1i < k write v; = H;:1 q;. For everyi, 1 <i<k,
(i) qi € R,
(ii) Frq, is in the conjugacy class of T in Gal(K(Wh)/K),
(111) order((’iti—uM)qq‘, ) H}(tha WM)) > Order((ﬁ:ti—lyM)Q7 Hl(Qv WM))?
(iv) {n € C:(n)q=0 for every g € X} C H(Q/K,W},).

PrROOF. Number the elements of C so that C' = {n1,n2,... ,nx}. We will
choose the q; inductively to satisfy (i), (ii), (iii), and

(77)111' € H} (in‘vW]t[) for every 1 € 07 (2)
order((1m:)q,, H (Kq,, Wiy)) = order((ni)a, H' (2, Wiy)).- 3)
Suppose 1 < ¢ < k and we have chosen {q1,...,q;-1} satisfying (i), (ii), (iii),

(2), and (3). We need to find g; also satisfying these properties. Define N to be the
(finite) product of N and all primes g of K such that {(n)q : n € C} ¢ H}(Kq, W)
(Recall that N is divisible by p and all primes where W), is ramified.)

Let L = K(Wa)K(1)(ps, (O5)YM), s0 L is a finite extension of K contained
in Q, and G, acts trivially on both Wy, and Wj;. Apply Lemma 2.1 with this L,
K = Kr;_, i and n = n; to produce an element v € Gr. Let L' denote the (finite)
extension of L which is the fixed field of

ker((rir, ,,nm)r) Nker((n:)r)

where we view (kr,_, m)r € Hom(Gr,Wyy) and (n;)r € Hom(Gp,W;,). Let q;
be a prime of K not dividing N’t;_1, whose Frobenius in L'/K, for some choice
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of prime above q;, is y7. The Tchebotarev theorem guarantees the existence of
infinitely many such primes.

Property (i) holds by Lemma IV.1.3, and (ii) and (2) are immediate from the
definition. By Lemma 1.4.7(i), evaluating cocycles at Frg, induces an isomorphism

Hp(Kq,, War) = War/(Frg, = )War = War /(1 = DWy

and similarly for W;,, so (iii) and (3) follow from Lemma 2.1(i) and (ii).

It remains only to check (iv). Define ¥ = {q1,...,qx}, and suppose that for
some %, (1;)q = 0 for every q € £. Then in particular (n;)q, = 0, so (3) shows that
n; € ker(H (K, W};) — HY(Q,Wi)) = HY(Q/K,W},). O

DEFINITION 2.4. Suppose X is a finite set of primes in R. For every M we
have an exact sequence

locs
=W

0 — 8™ (K, W) — S=U5r (K, Wiy) PH (K Wa)  (4)

qes
where we recall that
H(Kq,War) = H' (Ko, War)/H} (Kq, W)

and loc§; yy,, is the sum of the localization maps. (in Theorem I1.7.3 the map
locs; w,, was denoted locs, y; 5, ). We define locg; iy, in exactly the same way with
W replaced by W.

If a is an ideal of K let ¥, denote the set of primes dividing a. Let
nw = Llo (H'(Q/K, W) NS> (K, W))
as in Theorem I1.2.2.
LEMMA 2.5. Suppose m = p™ is a nonzero ideal of O, k € ZT, M is a power

of p satisfying
ordyM > n+ (k+ 1)ny +indp(c),
and
E={q1,..., %} CRum
s a finite set of primes of K such that for 1 <i <k,
(a) Fry, is in the conjugacy class of T in Gal(K(W)/K),
(b) order((ke, , ar)a;s H(Kq,, War)) > order((ke, o, m)a, H' (Q, War))

where t; = Hj-:l q;. Then the map locs, y.  of (4) satisfies
Lo (coker(locs, ) < indo(c) + nw.

REMARK 2.6. Since the proof of Lemma 2.5 is a rather technical calculation,
we first give a proof under the mild additional hypotheses

W =0 and HY(Q/K,W) =0. (%)

We will follow this immediately by the general proof; we include the first one only
because it makes the important ideas clearer.
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PROOF OF LEMMA 2.5 UNDER THE ASSUMPTION (*). Note that by assump-
tion (a) of the lemma, Was/(Frq, — 1)Wyy is free of rank one over O/MO for
every i. Therefore we can apply Corollary IV.5.5 with q = q; and v = v;_1 to relate
K, v and ke, , ar. This will be the key to the proof.

By Lemma 1.2.2(i) and (x), all of the maps

(e
-

HY (K, Wy) 2 HY (K, Wy) 25 HY(K,W) HY(Q,W)

are injective. Therefore for 0 < i < k we can define
0; = order(ke, ar, H' (K, War)) = order(eas (Ko, ar ), H (K, W))
= order((tas(Ke, 0r))e, H(Q, W) = order((ke, ar)a, H (2, War)).
By Lemma 1.1,
09 = ord, M —indp(c) > n. (5)
For:>1,
2; > order((ke; ar)q;, HE(Kq;s War)) ©)
= order((&ti*l)M)qi,H}(in,WM)) > 0.1,

the equality by Corollary IV.5.5, and the inequality on the right by assumption (b)
of the lemma. Combining (5) and (6) we see that 9; > n for every i.

It follows from Lemma 1.5.4 and the injectivity of ¢j; that the homomorphism
tmar 2 HY K, W) — HY(K, War) sends S¥rvi (K, Wy,) onto S¥#vi (K, Was)m. The-
orem IV.5.1 shows that k., s € S¥#vi (K, Way), so for each i > 1 we can choose
R; € S¥rvi (K, W,y,) such that Ot pr(Ri) = P2 "R, -

For every i < k let A®) denote the O-submodule of H'(K, W,,) generated by
{R1,... R}, and let A =A%), Then

AW S (K, W) € 8™V (K, Wiy)
so for ¢ > 1, writing loc$. for locgwm, restriction to q; induces a surjective map
locsy (AD) /locsy (AT = O(R;)q, € HX(Kq,, W)
Hence for every ¢ > 1, (6) shows that
to(lock(AD) /lock,(AU™Y)) > order((Ri)q,, Hy (K, Win))
> order((Ke; ar)qss He(Kqis War)) — (9; — n)
>n+0,-1—0;.
Using the filtration
loc (A) = locs, (A®) 5 locsy (AR D) 5+ .. D loc (AD) D lock (A®) =0

we conclude, using (5) and the trivial estimate 9 < ord, M, that

Lo (locs (STV=r (K, W) > Lo(lock (A))

k
> Z(n +0,_1 — 07;) =kn—+0y— 0 > kn — ind@(c).
=1
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For every prime q € Ry, H (Kq, Wn) = W,Erq:l by Lemma 1.4.7(i), so
lo(@qes HHKq, Wa)) = klo(Wi=") = klo(Wa /(T — )W) = kn.
Thus
Lo (coker(locsy,)) < indp(c)
as desired. ]

PROOF OF LEMMA 2.5 IN GENERAL. Recall that ¢j; is the natural map from
HY (K, W) to HY(K,W). For 0 < i < k define

0} = order(ear (e, ar), H' (K, W),
0; = order((ke, ar)a, HY (S, War)).
By Lemma 1.1,
9y = ordy M — indo(c) > n+ (k + 1)ny. (7)
Since p (ke; ar)a = 0,
P2 uns (Ko, ar) C HY(Q/ K, W).

By Theorem IV.5.1, p%ups(ke, 1) € S¥evi (K, W). The primes dividing v; are
unramified in Q/K and satisfy H}(Kq, W) = Hy,(Kq, W) (Lemma 1.3.5(iv)), so we
conclude that

pDiLM(Hri,M) € HI(Q/Kv W) n SZP% (Ka W) = Hl(Q/Ka W) n SZP(K7 W) (8)
Therefore for every 4, p%i "W ipr(Ke, ) = 0, s0
nw +0; >0, (9)

Suppose i > 1. If Z,, is an inertia group of ¢,, then (using Lemmas 1.3.8(ii), I.3.5(iv)
and 1.3.2(ii)) we have a diagram

H;(KCINWM) = Hl(KCIwWM)/Hllxr(KCIwWM) C Hom(:[quM)
lLM J{ n
Hsl(qu"W) = Hl(in,W)/H&r(in,W) C H0m<ICIi7W)'

Therefore the map ¢y : HY (Kq,, Wa) — HY(K,,, W) is injective. This gives the
first equality of

D; > Order(LM<’%ti,M)‘1i’HSI(KCIHW)) = Order((’%ti,M)QNHSI(KCINWM))
= Order((K’ri—hM)qi’H}(Kch‘,?WM)) > 01,

the second equality comes from Corollary IV.5.5 and assumption (a) of the lemma,

(10)

and the final inequality comes from assumption (b). Combining this inequality with
(7) and (9) we conclude by induction that

0, >0, — (i + nw >n.
For every i < k let A®) denote the O-submodule of H'(K, W) generated by
{p% " unr (key ) 1 0 < j < i,
and A = A®)_ By Theorem IV.5.1,
AW c S%i (K, W) (11)
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so for 7 > 1 restriction to g; induces a surjective map
locs; yy (AY) flocs, y (A7) = p2 " (ke aa)q, C Hy (K, W),
For every ¢ > 1, (10) shows that
order((p® ke, a )qss He (Kg;, War)) > 0i21 — i + 1,
so using the filtration
locs; y (4) = loc;W(A(k)) ») 1oc§,W(A(k*1)) oD loc§7W(A(1)) >\ loci—;)W(A(O))
we conclude that

k
lo(locs, w (A)) > Z(Di_l —0;+n)=kn+0 —0 > kn+0d —ord, M. (12)
1

Since m = p”, (8) shows that

mA C HY(Q/K,W)N S (K,W). (13)
Let Ay, denote the submodule of A killed by m. By (11) and Lemma 1.5.4,
A C SZ5 (K, W) = 1 (STV57 (K, Wy)). (14)
From the exact diagram
0 0 0
0 —— ker(lock ) N A An locs yy (Am) —— 0
0 —— ker(locy ) N A A locg yy (A) ——— 0
mA
0

we see that
to(locs; y (Am))
= Lo(locs; w(A)) + Lo((ker(locs; i) N A)/(ker(locs, 1) N Aw)) — Lo(mA).
By (11) with i =0,

(15)

A©) = 2=y (kg ) C ker(locs; ).
Since A© is a cyclic O-module, we conclude using (7) that
Eo((ker(locsz’w) N A)/(ker(locSE’W) NAy)) > KO(A(O)) — EO(A(O) NAy)
> (0= (0 —n)) —n
= ord, M — indp(c) — o.
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Combining this with (14), (15), (12), and (13) yields
Lo(loc (S5 (K, W) 2 Lolock w (An)
> (kn + 9 —ordy M) + (ordy, M — indo(c) — d9) — nw
= kn —indo(c) — ny.
For every prime q € Ry, H (Kq, Wn) = Wa'*=! by Lemma 1.4.7(i), so
lo(SqesH (Kq, Wn)) = klo(Wi™h) = klo(Wn/(T = 1)Wn) = kn.
Thus
lo(coker(locs, v, ) = lo(DqexH; (Kq, W) — Lo(loc, w, (8777 (K, W)
<indp(c) + nw
as desired. 0

PrROOF OF THEOREM II.2.2. Fix a nonzero ideal m = p™ of O. Let C' be the
image of Sy, (K, W) (which is finite by Lemma 1.5.7(i)) in H'(K, W};) where M
is a power of p large enough so that

ordy M > n + (|Ss, (K, Wy)| + 1)nw + indp(c)

(if indp(c) is infinite then there is nothing to prove). Apply Lemma 2.3 with this
group C, let X be a set of primes of K produced by that lemma, and apply Lemma
2.5 with this set X.
Combining the inequality of Lemma 2.5 with Theorem I1.7.3(iii) shows that
EO(SEP (K, W;;)/Szuzp (K, W;;)) <nw + indo(c).
Therefore
Lo(tm(Ss, (K, Wy))) < Lo(im(Ssus, (K, Wg))) + nw + indo(c)
for every m. By Lemma 2.3(iv), tm(Ssus, (K, W) € HY(Q/K, W*)NSs, (K, W*),
and
Sy, (K, W) = lim v (S, (K, W),
SO
lo(Ss, (K,W*)) <indo(c) + nw + lo(H' (Q/K,W*) N Sg, (K, W"))
which is Theorem I1.2.2. O

3. Bounding the exponent of the Selmer group

The proof of Theorem 11.2.3 is similar to that of Theorem I1.2.2; it is easier in
that one can work with a single prime ¢ instead of a finite set of primes, but more
difficult in that one must keep track of extra “error terms”.

The idea is as follows. Given n € Ss, (K, Wj;), we use Lemma 3.1 below to
choose a prime g such that

o Hi(Kq, W) and Hi(Ky, War) are “almost” isomorphic to O/MO,
e order((kg,nm)q: HY (K4, War)) is approximately ord, M — indo(c)
o order((n)q, H}(Kq, Wj;)) is approximately order(n, H* (K, Wy;))
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Since the Kolyvagin derivative class 4,27 belongs to S Yva (K, Way), the duality The-
orem 1.7.3 shows that order((rq,n)q, HL (Kq, War)) + order((n)mH}(Kq,WJf/[)) is
“approximately” bounded by ord, M, and so we deduce that order(n, H' (K, W};))
is “approximately” bounded by indp(c). Since n € Sy, (K, W};) is arbitrary, if we
can bound all the error terms independently of M, this will prove Theorem II.2.3.
In the remainder of this section we sketch the details of this argument.

Keep the notation of §1 and §2. Suppose the Euler system c satisfies the
hypotheses Hyp(K,V), and fix a 7 € Gk as in hypothesis Hyp(K, V)(i). We now
allow p = 2.

Let a be the least positive integer such that p® annihilates the maximal G-
stable subgroup of (7 — 1)W and of (7 — 1)WW*. Hypothesis Hyp (X, V')(ii) ensures
that a is finite, since any divisible G i-stable subgroup of (7 — 1)W would be the
image of a Gi-stable subgroup of (7 — 1)V, which must be zero.

We have the following variant of Lemma 2.1.

LEMMA 3.1. Fiz a power M of p. Suppose L is a Galois extension of K such
that G, acts trivially on Wy and on Wy,. If

k€ HY (K, W), ne H (K, W3)

then there is an element v € G satisfying
(i) order(k(y7), War /(T — 1)Way)) > order((k)p, HY (L, W) —a — 1,
(i) order(n(y7), Wi, /(T — 1)Wi;) = order((n)r, H' (L, W;)) —a — 1.

PROOF. The proof is identical to that of Lemma 2.1, once we note that a G-
submodule of W), which projects to zero in Wy /(7 — 1)W)y is killed by p?, and
similarly for Wj;. The extra ‘1’ takes care of the case p = 2. O

Let Q = K(W)K(1)K (e, (O5)V/P7) as in §2.

LEMMA 3.2. If T # O and T # O(1) then HY(Q/K,W) and H'(Q/K, W*)
are finite.

PRrROOF. This is Corollary C.2.2 applied with F = K. O

ProOF OF THEOREM 11.2.3. If T = O(1) then by the example of Chapter I
86.1,

Sz, (K, W*) C Hom(Ag, D),
where A is the ideal class group of K, so Sy, (K, W*) is finite. The theorem as-

sumes that T' # O, so by Lemma 3.2 we may assume from now on that H'(Q/K, W)
and H'(Q/K,W*) are finite. Let

n = max{lo (H' () K, W), Lo (H"(©Q/ K, W*))}.

Suppose M is a power of p and n € Sy, (K,W;;). Apply Lemma 3.1 with
L =KWu)K (1) (s, (OF)YM) C Q, this 5, and with & = ky pr € HY(K, Way),
and let v € G, be an element satisfying the conclusions of that lemma. Then since
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H(Q/K,W) is the kernel of the restriction map H'(K, W) — H*(Q, W),
order(r1 a (Y7), War /(T — 1)Was)) > order(ear (k1 ar)a, H(Q,W)) —a — 1

> order(epr(k1 ), H (K, W)) —a—1—n

=ordyM —indp(c) —a—1—n (16)
by Lemma 1.1. Similarly

order(n(y7), Wi;/(t — 1)W3;) > order(n, H* (K, W};)) —a—1—n. (17)
Let L’ denote the fixed field of
ker((r1,0) 1) Nker((n)z),

and, using the Tchebotarev theorem, choose a prime q of K, not dividing N, whose
Frobenius in L'/K, for some choice of prime above q, is y7. By Lemma IV.1.3,
q€ Ry

As in the proof of Lemma 2.3, we conclude from (16) and (17) that

order((k1,m)q, H}(KC|7 W) > ordy M —indp(c) —a—1—n
and

order((n)q, H}(Kq, Wi)) > order(n, HY (K, W};)) —a—1—n. (18)
Let b= Lo(WT= /(W™= )iy ), where (WT=1)4;, is the maximal divisible submodule
of W™=1. By Theorem IV.5.4 and Corollary A.2.6,
order((nq’M)q,Hsl(KmWM)) > order((m,M)q,H}(Kq, Whar)) —2b
> ordyM —indp(c) —a—1—n—2b.
By Lemma 1.4.7(i),
Lo(Hy(Kq, W) = Lo(War)™") = Lo((W™=)ar) < ordp M +b.
Thus, applying Theorem 1.7.3(iii) with ¥ = ¥4, ¥o = ¥,, and € Sy, (K, Wy,),
we conclude that
order((n)q, H}(Kq, Wii)) < Lo(coker(locs, 5 )
< KO(Hsl(an War)) — order((kq,01)q; Hsl(Kq» W)
<indp(c)+a+1+n+3b
since kg € 81 (K, Wy). Combining this with (18) shows
order(n, H' (K, W3)) < 2+ 2a + 3b + 2n + indpc.

This holds for every M and every n € Sy, (K, Wj;). Since Sy, (K, W*) is the
direct limit of the Sy, (K, W};), if m = p?T2etsbrantindoc then we conclude that
mSy, (K, W*) = 0.
As is well-known, this implies that Sy, (K,W*) is finite: Lemma 1.5.4 shows
that
S, (K, W) = S5, (I, Wy © S, W) = 1 (SCK, W)
and the latter is finite by Lemma 1.5.7(i). O



CHAPTER VI
Twisting

In this chapter we extend the methods of Chapter II §4 and show how to twist
Euler systems by characters of infinite order. This will be used in Chapter VII
when we prove Theorems I1.3.2, 11.3.3, and I1.3.4: Theorem 4.1 shows that without
loss of generality we may twist T by a character of Gal(K/K), and Lemma 1.3
allows us to choose a particular twist that avoids certain complications.

We keep the setting of Chapter II: K is a number field, T is a p-adic represen-
tation of Gk, and K, is an abelian extension of K satisfying

Gal(Koo/K) = Z2.
Let I' = Gal(K« /K), and recall that A is the Iwasawa algebra

A=0[I]= lm O[Gal(F/K)]

K C; FCKoo

a complete local noetherian unique factorization domain. The characteristic ideal
char(B) of a finitely-generated A-module B was defined in Chapter IT §3.

1. Twisting representations

DEFINITION 1.1. Suppose p : Gg — O* is a continuous character, possibly of
infinite order. As in Example 1.1.2 we will write O, for a free, rank-one O module
with Gk acting via p, and if B is a G g-module we will abbreviate

B®p=B®o0,.
Then B®p is isomorphic to B as an O-module but not (in general) as a Gx-module.
If p: T — O* define
Tw,: A — A
to be the O-linear isomorphism induced by v — p(vy)7y for v € T.

LEMMA 1.2. If B is a finitely-generated torsion A-module and p : T — O 1is
a character, then B ® p is a finitely-generated torsion A-module and

(i) Tw,(char(B ® p)) = char(B),
(ii) Tw,(Anna(B ® p)) = Anna(B).

Proor. If f € A and £, € O, then

f-(be §p) = (Twp(f)b) ® &p-

The lemma follows easily from this, along with (for (i)) the fact that twisting
preserves the heights of ideals of A. O

89
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LEMMA 1.3. (i) Suppose B is Gx-module, free of finite rank over O, and
J1,..., Ji are subgroups of G whose projections to I' are infinite. Then
the set

{p € Hom([,0*): (B® p)”"" =0 for 1 <i <k and every n > 0}

contains an open dense subset of Hom(I', O*).
(ii) Suppose B is a finitely-generated torsion A-module. Then the set

{p € Hom(T',0*) : (B ® p) @4 O|Gal(F/K)] is finite for every K C,F C Ko}
is dense in Hom(T', O*).
PrOOF. Consider (i) first. Recall that @ is the field of fractions of O, and let

® denote an algebraic closure. For each i fix an element ~; € .J; whose projection
to I' has infinite order, and define

R; = {eigenvalues of 7; acting on B ® @},
Pi={rc O xRN py # 0},
Z;i ={p € Hom(I', 0) : p(vi) & P}
Each R; is finite, and p,.. N O™ is finite, so each P; is finite and thus Z = N;Z; is
an open dense subset of Hom(I', O*). We will show that Z is contained in the set
of (i).
Suppose ¢ € pye. Then
¢ is an eigenvalue of v; acting on (B ® p) ® ®
& p~ (93¢ is an eigenvalue of v; acting on B @ ®
& ¢ € p(vi) R
= p(vi) € Bi
Therefore if p € Z; and n > 0 then ~7 " does not have 1 as an eigenvalue on
(B®p)®@ ®. It follows that for for 1 <i <k, n >0, and p € Z,
(Bep)' @d=(Bep)ed)" =0

and since B has no p-torsion, (B ® p)an =0.
Let U C Hom(T', O*) be the set defined in (ii). We will show that U contains
a countable intersection of dense open sets, so the Baire Category Theorem shows
that U is dense. Since B is a quotient of a finite direct sum of cyclic modules, it is
enough to prove this when B = A/fA with a nonzero f € A.
Suppose B = A/fA,s0 B& p= A/Tw,1(f)A. If KC, F C Ky then
A/Tw,-1(f)A ® O[Gal(F/K)] is finite <
_ 1
p~ x(f) # 0 for every character x : Gal(F/K) — . M)

Let X be the set of characters of finite order of I' into ®. For every y € X let

Y, = {p € Hom(I', 0*) : p~*x(f) # 0}.

Since f # 0, each Y, is open and dense in Hom(I',0*), and (1) shows that U =
NyexYy. Since X is countable, this concludes the proof. O
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2. Twisting cohomology groups

For every extension L of K, write HX (L,T) = lim H'(FL,T), and if c is

K Cf FCKoo

an Euler system let ¢f oo = {¢LF} K, Fck.. € HX (L, T).

PROPOSITION 2.1. Suppose K C; L and p : Gal(LK/K) — O is a character.
The natural map on cocycles induces G i -isomorphisms

() HL(LT)®p = HL(LT®p)
if ¥ is a finite set of primes of K containing all primes above p.

PRrROOF. Let Lo, = LK, and write Lo, = UL, where [L, : L] is finite and
Gal(Loo/Ly) is in the kernel of Gal(LK../K) % (O/p"0)*. Since O,/p"0, is a

trivial G, -module, the natural map on cocycles induces Gx-equivariant isomor-
phisms

H'(Ln, T/p"T) ® p = H' (L, (T/p"T) ® p). (2)
Combining these isomorphisms with Lemma B.3.1 gives a sequence of isomorphisms
H;o(Lv ®p= lim Hl(Lna T/p"T)®p
S tim H (Lo, (T ® p)/p" (T @ p)) = HY (LT @ p).
This proves (i).
The isomorphisms (2) induce

lim H'(L,,W)® p — lim H'(L,, W & p)

and, for every place w of L,
Hl(Ln,uan") ®P - Hl(Ln,waWp" ®P)- (3)
We need to show that if w does not divide p, then the isomorphisms (3) induce

i H (L, W) © p = lim H (L., W @ p).

Since all primes above p are in ¥, this will prove (ii).

Fix a place w of LK, not dividing p, and let Z denote an decomposition group
of win G. Since K, /K is unramified outside p, p(Z) = 1, and 7 is also an inertia
group of w in Gy, for every n.

By Lemma 1.3.2(i), for every n we have

H&r(Ln,U“ W) = WpI"/(Frn - 1)WpI"
where Fr, is a Frobenius of w in Gr,. By Lemma I.3.5(iii), H}(Lnyw,an) is
the inverse image of (W7%)giy, + (Fr,, — 1)W7Z),» under this isomorphism, and we
define the subgroup Hp(Ly,u, Wyn) C H (L w, Wyn) to be the inverse image of
(WH)div)pn + (Frp, — 1)W2E.. Then

Lim H g (L, W) = 1im H (L, W) = 1im H (L, W)
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and similarly with W replaced by W ® p. The isomorphism (3) induces an isomor-
phism
H}?(Ln,wa Wp") ® P L H}T(Ln,wa Wp" ® P)

so this concludes the proof of (ii). O

REMARK 2.2. Note that Proposition 2.1 does not assert the existence of an
isomorphism, or even a map, from H(L,T) to H(L,T ® p).

3. Twisting Euler systems

DEFINITION 3.1. Suppose ¢ is an Euler system for (T, K,), more specifically
(in the notation of Definition I1.1.1) for (T, I, N), where Ko, C K and N is divisible
by p and the primes where T is ramified. Suppose p : Gal(K/K) — O is a
character which factors through a finite extension of K,,. (We can always ensure
this latter property by taking K. to be the compositum of all Z,-extensions of K
in K.) Let L be finite extension of K in K, and Lo, = LK, such that

(i) p factors through Gal(L.,/K),
(i) Loo/K is ramified only at primes dividing N, oo, and the conductor of p.

(For example, Lo, could be the fixed field of ker(p) NGk __, and L a finite extension
of K such that Lo, = LK.) Fix a generator £, of O,. We define a collection of
cohomology classes ¢’

{ch e H(F,T®p): KC,F C K}
as follows. If KC, F C K let cf. be the image of cpr 0 ® &, € HL(FL,T)® p

under the composition

Corpr,/r

HL(FL,T)®p -~ HL(FL,T®p) — HY(FL, T ® p) HY(F,T ® p)

where the first map is the isomorphism of Proposition 2.1 and the second is the
natural projection from H to H'.

REMARK 3.2. This definition is independent of our choice of L. For, suppose
L’ is another such choice satisfying the properties above. We may as well suppose
that L C L'. If K, F C K, then FL'/FL is unramified outside A, co, and the
conductor of p. Those primes which divide the conductor of p but do not divide p
are already ramified in F'L/ K, so the Euler system distribution relation shows that

COTFL'/FL(CFL') =CFL-

REMARK 3.3. Let £, ,, denote the image of the generator £, in O,/p"O,. An
examination of the proof of Proposition 2.1 shows that for every F, with L,, as in
that proof, we have

crL, ®&pm € H(FLy, (T ® p)/p™(T ® p))
and then
p _ .
cp = lim Corpr, /r(crr, ®&pn)

€ lim H'(F, (T © p)/p"(T @ p)) = H'(F.T @ p).
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REMARK 3.4. When p is a character of finite order, this definition of c” agrees
with the one given in Definition I1.4.1. (Just take L to be the fixed field of ker(p).)

THEOREM 3.5. Suppose ¢ is an Euler system for (T,K,N) where Ko, C K,
and p : Gal(K/K) — O is a character which factors through a finite extension
of Keo. Then the collection of classes {ct, € H'(F,T ® p)} defined above is an
Euler system for (T & p, K, §N) where § is the non-archimedean, non-p part of the
conductor of p.

PROOF. Suppose K C, F C, F' C K. We have a commutative diagram

HL(F'LT)®p —~— HL(F'LT®p) —"— H'(F T p)

C0r®1JV CorJr CorF//Fl

HL(FL,T)®p ——— H(FL.T®p) —2 HYF,T®p)

Since c is an Euler system,
Corpr k. /FLK. (CF L) = (H P(Fry T Frq_l))CFL,oo
qes
where
S ={q of K : g ramifies in F'L/K but not in FL/K, and qt N}
= {q of K : q ramifies in F’/K but not in F/K, and q 1N},
the last equality because the conductor of L/K is divisible by f and divides fA oo

times a power of p. Therefore

(Corprri. /FrK..(CF L)) ® &, = (H P(Fry T Fr epree) ® €,
qes

= [T P p(Frg) Fry ) (erroe ©€,)
qes

and so, using the diagram above

Corpr/p(ch) = HP 71|T*,pFrq)F Her.

qes
Since
det(1 — Fr;1x|(T ®p)*) = det(l — p(Frq)Fr;1x|T*) = P(Fr;1|T*;p(Frq)x),
this shows that c” is an Euler system for (T ® p, K, fN). O

LEMMA 3.6. Suppose c is an Euler system for (T,K,N) where Ko, C K, and
p,p : Gal(K/K) — O* are characters which factor through a finite extension of
Ko. Letf,, fpr, fpp be the non-archimedean, non-p part of the conductors of p, p’,
and pp'. Fiz generators of Op, Oy, and O,y = Op/® Oy 50 that £y =&, @&,y

If every divisor of ,f,» divides f,y N, then (c?)? = cPP" . In particular, if f, | N'
then (c?)?”' = c.

PROOF. Let L, be a finite extension of K satisfying (i) and (ii) of Definition
3.1 for p, and similarly for L, .
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Our assumption on the conductors of p, p’, and pp’ ensures that the compositum
L,L, satisfies Definition 3.1(i) and (ii) for pp’. The lemma now follows easily from
the definitions of c”, ¢/, and ¢ (and Remark 3.2). O

4. Twisting theorems
Recall that T' = Gal(K o /K).

THEOREM 4.1. If p: ' — O* is a character then Theorems 11.3.2, 11.3.3, and
11.3.4 for T and c are equivalent to Theorems 11.3.2, 11.3.3, and 11.3.4, respectively,
for T ® p and cP, where c” is the FEuler system for T ® p given by Theorem 3.5.

PROOF. The hypotheses Hyp(K oo, T), Hyp(Kw, V), and Hyp(K /K) depend
only on the action of Gk_ on T, so they are not affected by twisting by characters
of .

Write

X = Hom(Sx, (Koo, W*), D), X{® = Hom(Sx, (Ko, (W © p)*), D).

Since (W ® p)* = W* ® p~!, Proposition 2.1(ii) shows that xe0) = x g p, so

by Lemma 1.2(i)
Tw,(char(X{I®P))) = char(X (D).
The argument of Lemma 1.2 also shows that
Tw,(inda(c”)) = inda(c).

The theorem follows from these equalities. O

5. Examples and applications

Recall that ecye : Gx — Z; C O* is the cyclotomic character, and let w :
G — (2} )tors be the Teichmiiller character giving the action of G on p,, (if p is
odd) or p, (if p = 2).

5.1. Tate twists. Suppose p, C K, so that ey is a character of Gal(K/K).
If T is a p-adic representation of G, then for every integer n we write T'(n) for
the Tate twist 7' ® ef.. By Theorem 3.5, an Euler system c for (T, K, N) gives
an Euler system coe for (T(n), K, N), and by Lemma 3.6 (c%eve)eve = e for
every n and m.

Now take K. to be the cyclotomic Zj,-extension of K. Then e.y. does not
necessarily factor through Gal(K/K), but w™lecye does. Thus if ¢ is an Euler
system for (T, K,), Theorem 4.1 shows that for every n, Theorems I11.3.2, I11.3.3,

and I1.3.4 for T' and ¢ are equivalent to those same theorems for T ® w™ "€’

eye and

—_n_n
e "edye.

5.2. Cyclotomic fields. In Chapter I1II, §2 and §4, we used cyclotomic units
and Stickelberger elements, respectively, to construct Euler systems ccyc for Z,(1)
and cg; for Z,.

EXERCISE. Both cg** and ccyc are Euler systems for Z,(1). Determine the
relation between them.
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5.3. Elliptic curves with complex multiplication. Let K be an imaginary
quadratic field, K., the Z%—extension of K, and suppose FE is an elliptic curve
defined over K with complex multiplication by the ring of integers Ok of K. Fix
a prime p of K above p, and let O be the completion of Ok at p. Fix a generator
of pO and let T,,(E) denote the p-adic Tate module of E, which is a free, rank-one
O-module. Let 1 be the canonical character

1/) . GK — Aut@K(Epoo) >~ 0%,
Then T, (E) = Oy.
Let cop denote the Euler system of elliptic units for O(1) (over K) of Chapter ITI

§3. The character wsc_yi factors through a finite extension of K., so by Theorem
1

3.5 we get an Euler system cp, = cgf“—yc for O(1) @ Yest = Oy = T,(E). In

cyc
particular we get an element

cepx € H'(K,T,(E)).
Let V, =T, ® K,. As usual (see Example 1.6.4), if v divides p we define
H}(Ko, Vo (E)) = image(E(K,) @ Qp — H' (K, V().
As in Example 1.6.4,
Hp(Ky, Vo(E)) = HY Ky, Vy(E) =0

for all v # p. It follows that H' (K, T,(E)) = S} (K, T,(E)), so in particular
cppx € SPHK,T,(E)).

There is an exact sequence

0 — B(K) ® Z, — S(K, Ty(E)) — lim II(E, )y» — 0

so if the p-part of the Tate-Shafarevich group II(E) ) is finite (and this is known
to be true if £ is defined over Q and the L-function L(E,q,s) of E vanishes to
order at most one at s = 1) then S(K,T,(F)) = E(K) ® Z,.

One can show that

CEp K S S(K, Tp(E)) = L(E/K, 1) =0.
If L(E/k,1) = 0 then one can further compute the p-adic height of cg p x in terms

of the derivative of the p-adic L-function of E at s = 1. See [Ru7] for the details
of these computations.
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CHAPTER VII
Iwasawa theory

In this chapter we use the cohomology classes constructed in Chapter IV, along
with the duality results of Chapter I §7, to prove Theorems I1.3.2, I1.3.3 and I1.3.4.
The proofs follow generally along the same lines as as the proof of Theorem I1.2.2
given in Chapter V, except that where in Chapter V we dealt with O-modules,
we must now deal with O[Gal(F/K)]-modules for K C, F C K,,. This makes the
algebra much more complicated.

In §1 we give the proof of Theorems I11.3.3 and 11.3.4, assuming Theorem 11.3.2
and two propositions (Propositions 1.4 and 1.6), whose proofs will be given in the
following sections.

We keep the notation of Chapter II. In particular I' = Gal(Ks/K) and A =
O[] f KC,F C K and M is a power of p, then let Ap = O[Gal(F/K)] and

A = Ap/MAp = (O/MO)[Gal(F/K).

We assume throughout this chapter that we have a p-adic representation T' of
G and an Euler system c for (T, K+) such that cx oo = {cr}tr & HL (K, T)tors
(or else there is nothing to prove). We assume that hypotheses Hyp(K o, V) are
satisfied, and we fix once and for all a 7 € Gk as in hypothesis Hyp(K, V)(i):
Le., 7 fixes K(1), Keo, py, and (O)V/?P” and dime (V/(7 — 1)V) = 1.

1. Outline
Since 7 fixes e, we also have dimg (V* /(7 — 1)V*) = 1.
DEeFINITION 1.1. Fix an isomorphism
o W*/(r—1)W* = D.
Recall that Q = K(1)(W, e, (OF)YPT). Define Qy, = Koo and let Q8 be the

fixed field of 7 in Q..
There is a natural evaluation homomorphism

Ev*:Gom — Hom(H' (Ko, W), D),
defined by
Ev?(o)([¢]) = 0" (c(0))
for every o € G, and every cocycle ¢ representing a class in [¢] € H' (Koo, W*).
This is well-defined because c(o) is well-defined modulo (0 —1)W*, and if o € G, »

then o acts on W* through Gal(Qoo/QfQ) which is (topologically) generated by T,
so (o — H)W* C (1 —1)W* = ker(6*). Similarly, the cocycle relation shows that
Ev* is a homomorphism.

97
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If B maps to H' (K, W*) (for example, if B is a subgroup of H!(F, W},) where
KC,F C Ko and M € O) then we will also write Ev* or Evp for the induced map

Gom — Hom(B, D).

For example, EVZEP(KOC,W*) maps G, to Xoo = Hom(Sy, (Koo, W*), D).
DEFINITION 1.2. Define a positive integer a, by
ar = W= (W aw] - max{|Z], |Z*[}

where (W7=1)y;, is the maximal divisible subgroup of W7=1, and Z (resp. Z*) is
the unique maximal Gk __-stable submodule of (7 — 1)W (resp. (1 — 1)W*).

LEMMA 1.3. (i) a, is finite.
(ii) If T and T satisfy hypotheses Hyp(Koo,T) then a; = 1.

PRrROOF. If the submodule Z (resp. Z*) of Definition 1.2 is infinite, then it
gives rise to a proper G__-stable submodule of V' (resp. V*). But hypothesis
Hyp(K o, V) asserts that V is irreducible, and it follows that V* is as well, so this
is impossible. Thus |Z| and |Z*| are finite, and [W™=! : (W7=1)4;] is finite simply
because W has finite Z,-corank. This proves (i).

Similarly, if hypotheses Hyp(K,T) hold, then the irreducibility of T/pT
(where p is the maximal ideal of @) shows that Z and Z* must be zero, and
Proposition A.2.5 shows that W= = (W7=!)4;,. This proves (ii). O

Suppose that Theorem I1.3.2 holds (the proof will be given in §4), so X, is
a finitely-generated torsion A-module. By Theorem VI.4.1, if p : ' — O is a
character then Theorems I1.3.2, 11.3.3, and I1.3.4 for T" and c are equivalent to
Theorems 11.3.2, 11.3.3, and I1.3.4 for T'® p and the twisted Euler system c” of
Chapter VI §3, respectively. Thus by Lemma VI.1.3(ii) applied to the A-module
Xoo ® A/char(X ), twisting T and c if necessary we may assume that

Xoo ® Ap and Ap/char(X o )Ap are finite for every K C, F' C K. (1)

As discussed in Chapter II §3, since X, is a torsion A-module we can fix an
injective pseudo-isomorphism

PAr/fir — X, (2)
i=1
where the nonzero elements f1,...,f, € A satisfy fiq | fi for 1 < i < r—1.
The sequence of principal ideals (elementary divisors) fiA,...,f.A is uniquely

determined by these conditions, and the characteristic ideal of X, is
char(Xoo) = [ [ fih (3)
i=1

Assume for the rest of this section that, in addition to hypotheses Hyp(K, V),
hypothesis Hyp(Ko/K) is satisfied as well.

PROPOSITION 1.4. There are elements z1, ... , 2z, € Xo and ideals g1,... ,8, C
A such that for 1 <k <r

(l) Zr € Ev* (TGQOO),
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(ii) arge C fel and, if k <7, gk C grt1,
(iii) there is a split exact sequence
k—1 k
0— ZAzi — ZAzi — A/gr, — 0
i=1 i=1
50 Zle Az = @F A/g; and Zle Az; is a direct summand of Y., Az;,
(iv) ar(Xoo/ Dol Az;) is pseudo-null.

The proof of Proposition 1.4 will be given in §6. Using (2) it is easy to find
{z;}, with g; = f; A, satisfying (ii), (iii), and (iv), but condition (i) will be essential
for our purposes.

DEerFINITION 1.5. Fix a sequence z1,...,2, € X as in Proposition 1.4 and
define
-
Zoo =Y Az C Xeo.
i=1
If 0 < k < r, a Selmer sequence o of length k is a k-tuple (oy,...,0%) of

elements of TGq_ satisfying
EV*(O'Z') —z; € MZOO

for 1 < i < k, where we recall that M is the maximal ideal of A. (When k = 0,
the empty sequence is a Selmer sequence.) Note that by Proposition 1.4(i), Selmer
sequences exist, for example with all the above differences equal to zero.

Suppose M is a power of p. Let Qn = K(1)(pp, (OF)YM Wyy), and if
KC,F C Ky let Lpyr D FQpy be the fixed field of the subgroup

(1 ker((9)ray) C Gro,.
cESx, (F,W3)

The restriction of Sy, (F,Wj,) to FQys is a finite (Lemma 1.5.7) subgroup of
Hom(Gra,,, Wi;), so Lp s is a finite abelian extension of FQu. It is not dif-
ficult to check, although we do not absolutely need it, that Lg /K is Galois and
unramified outside primes above p, co, and primes where T is ramified.

For 0 < k < r we call a k-tuple (Q1,...,Qy) of primes of F a Kolyvagin
sequence (for F and M) if there is a Selmer sequence o of length k such that for
1 <i <k, the prime of K below Q; belongs to the set R of Chapter II §1, and

FI‘Qi =0; On LF,JM

(all primes in R are unramified in Lg ps/K). If 7 is a Kolyvagin sequence of length
k we will write q; for the prime of K below Q; and we define

k
t(m) = H qi-

By Lemma IV.1.3, v(7) belongs to the set Ry as defined in Definition IV.1.1.
Let II(k, F', M) be the set of all Kolyvagin sequences of length k for F' and M.
When k = 0, II(k, F, M) has a single element, the empty sequence (independent of
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F and M). Define an ideal in Ap p
\I](kuF7 M) = Z Zw(’%F,r(ﬂ'),M) - AF,M
well(k,F,M) ¥

where the inner sum is over ¢ € Homp(ArnmKpe(m),m; Arv) and Kpemy, v 18
the Euler system derivative class constructed in Chapter IV §4. In other words,
U(k,F, M) is the ideal of Ap s generated by all homomorphic images of modules
ArMER(w),m @ T Tuns through I1(k, F, M).

PROPOSITION 1.6. There is an element h € A relatively prime to char(X),
and for every K C;F C K there is a power Np of p, such that if K, F C K,
M > Np is a power of p, and 0 < k < r, then

ha2 ¥ (k, F, MNp)Ara C frp1¥(k + 1, F, M).
Proposition 1.6 is the key to the proofs of Theorems 11.3.3 and I1.3.4; it will
be proved in §7. We now show how to use Proposition 1.6 to complete the proof

of Theorems I1.3.3 and II1.3.4. Recall that if ¥ is a set of places of K, then K
denotes the maximal extension of K in K which is unramified outside .

COROLLARY 1.7. Suppose K C, F C K, X is a set of places of K containing

all primes above p, all primes where T is ramified, and all infinite places, and h € A
satisfies Proposition 1.6. If ¢ € Homy(HY(Ks/F,T),Ar), then

h"a2")(cr) € char(Xoo)Ap.
ProOOF. Note that cp € H(Kx/F,T) by Corollary B.3.5.

Suppose 0 < k < r and M > Npg is a power of p, where Ng is as in in
Proposition 1.6. Proposition 1.6 shows that

had ¥ (k, F, MNy " Apar € fry1@(k+ 1, F, MNm F " AR,
so by induction, writing M’ = M N}. and using (3), we conclude that

h a2 (0, F, M")Apn C (H fi)\lf(n F.M)
= T @)
C (H fi)AF’M = char(Xoo)Ap M
=1

By Lemma IV.4.13(1), Kk 1,m is the image of cp under the injection
HY(Ky/F,T)/M'H"(Kx/F,T) — H'(Ks/F,Wyp) — H'(F,Wa).
Let 1) denote the composition
Aparkpiae — H (Ks/F,T)/M'H (Ks/F,T) % Apar — Apas

induced by the inverse of this inclusion and by . By definition 1/3(/@:)17 M) €
U0, F, M")Ap p, so (4) shows

hTa?_TQZ(FCF’LM) S char(Xoo)AF’M.

Since this holds for every sufficiently large M, and ¥ (kr 1) = ¥(cr) (mod M),
this completes the proof of the corollary. O
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LEMMA 1.8. Suppose G is a finite abelian group, R is a principal ideal domain,
and B is finitely generated R|G]|-module with no R-torsion. If f € R[G] is not a
zero-divisor, b € B, and

{(b) : ¥ € Hompg)(B, R[G])} C fR[G],
then b € fB.

PRrROOF. Let B’ = Rb+fB. Since f is not a zero-divisor, we have a commutative
diagram

HomR[G] (B/7 fR[G]) 4 HomR[G] (Bl7 R[G]) — HOIIIR(B/, R)

l l l

Hompg(q(f B, fR[G]) L Hompq (fB, R[G]) —— Homg(fB, R)

in which the horizontal maps are all isomorphisms (see for example Lemma IV.3.3
for the isomorphisms on the right).

Suppose ¢ € Homgq(fB, fR[G]). Since B has no R-torsion, ¢ extends
uniquely to a map ¢ : B — R[G], and by our assumption, the restriction of ¢
belongs to Hompg(g)(B’, fR[G]). Thus all the vertical maps in the diagram above
are isomorphisms. Since B’ and fB are free R-modules, the surjectivity of the
right-hand map shows that B’ = fB, which proves the lemma. O

Let indj (c) be as in Definition 11.3.1.
THEOREM 1.9. With notation and assumptions as above,
char(X o) divides a®"indy (c).

PROOF. Suppose h € A satisfies Proposition 1.6. Let ¥ be a finite set of
places of K containing all primes above p, all primes where T is ramified, and all
infinite places. If K C, F C K, Corollary 1.7 and Lemma 1.8 applied with B =
HY(Kx/F,T)/H (Ks/F,T)tors and b = h"a2"cp show (note that H'(Kx/F,T) is
finitely generated over Z, by Proposition B.2.7 ) that

h"a’ cp € char(Xoo ) (HY (Ks/F,T)/H (Kx/F,T)tors)-

It follows from Lemma 1.2.2(ii) that if K C,F C Koo, HY(F,T)tors is annihilated
by the annihilator in A of W&o so lim (H' (F, T )tors) C HL (K, T)tors (Where the
latter group is the A-torsion submodule), and we deduce that

RTaS"Ck oo € char(Xoo)(HL (K, T)/HL (K, T)tors)-
Therefore if ¢ € Homp (HL (K, T),A) then
R"a2" ¢k 00) € char(Xo).
Since h is relatively prime to (the principal ideal) char(X,), it follows that

a2 d(Cx.00) € char(Xo).

This completes the proof. O
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ProOOF OF THEOREMS I1.3.3 AND II.3.4. Lemma 1.3(i) shows that a, is a (fi-
nite) positive integer, so Theorem I1.3.4 is immediate from Theorem 1.9. If in
addition hypotheses Hyp(K,T) are satisfied then a, = 1 by Lemma 1.3(ii), and
Theorem 11.3.3 follows as well. O

2. Galois groups and the evaluation map

Keep the notation of the previous section.

DEFINITION 2.1. Define ¢, (z) = det(1 — 77 12|T*)/(z — 1). Our assumptions
on T ensure that

q-(z) =det(1 — 7z|T)/(x — 1) € O[z].
and that, by Lemma A.2.4(ii) (applied with o = 771)
() V/(r-1)Vv Syt

is an isomorphism of 1-dimensional vector spaces.
The D(1)-dual of the isomorphism 6* of Definition 1.1 is an isomorphism

o) = 17

The inverse of this isomorphism, together with the generator & of O(1) chosen in
Definition IV.4.1, gives an isomorphism

9 : (WTZl)div ;) D

Define 6 to be the (surjective, by Lemma A.2.4) composition

= 71 —
g:-w/ir— 1w L0 w=l,, -~ D.
We also fix once and for all an extension of 6
6: W™= - D.

This extension is not in general unique, but the difference between any two choices
lies in Hom(W7=1/(W7=1)4;,, D) which is killed by a.

DEFINITION 2.2. Recall the evaluation homomorphism
Ev':Gop — Hom(H' (K4, W*),D)
of Definition 1.1. Similarly we define
Ev:Gho — Hom(H' (K, W),D)
by
Ev(o)([c]) = 0(c(a))
for every o € G(,» and every cocycle ¢ representing a class [] € HY(Ku,W).

If B maps to H' (K., W) (for example, if B is a subgroup of H'(F, Wjs) where
KC,F C K and M € O) then we will also write Ev or Evg for the induced map

Gom — Hom(B, D).
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DEFINITION 2.3. Suppose K C; F C K, and M is a power of p. Define

Rr.m- = {t € R : for every prime q dividing ¢, Fr, belongs to
the conjugacy class of 7 in Gal(FQy;/K)}

where Qpr = K (1)(pps, (O5)YM W)/ K) as in Definition 1.5. By Lemma IV.1.3,
Rr M+ C Rpv where Ry is the set defined in DefinitionIV.1.1.

Suppose q € Rra-- Let Q be a prime of K above q such that Frq = 7
on FQus, and write Fry = Frq. Recall the generator o4 of Gal(K(q)/K) given
by Definition IV.4.1, and fix a lift of o4 to the inertia group Zg of Q in Gk. By
Lemma I.4.7(i) (which applies thanks to Lemma IV.1.2(i)), evaluation at o4 induces
an isomorphism

Hsl(FQ7WM) L)WJF\/[rq:1: ]7\—/1:1
and we define another evaluation map Evq : H*(F, W)y — D by
Evq(c) = 0(c(aq))-
As above, if B maps to H'(F, W)y we will also write Ev, or Evy g for the induced
map B — M~10/0 = O/MO.

LEMMA 2.4. Suppose K C, F C Ko, M is a power of p, and B is a Ap-module.

Recall that Ap = Ap/MAp. The map

Homep(B,0O/M0O) — Homa(B,Ap )

v 9
defined by
by = > dbnt
neGal(F/K)
is an O-module isomorphism. If 1» € Homop(B,O/MO) and o € Gal(F/K) then
oY =o0"g

so this bijection is not in general a Ap pr-module homomorphism.

PROOF. The map Homp (B, Ar ) — Homep(B,O/MO) induced by compo-
sition with ZneGal(F/K) ayn — a1 is a 2-sided inverse of the map in question, so
it is an isomorphism. The second identity is easily checked. (Note that o acts
on ¢ € Homp(B,0/MO) by (c¢)(b) = 1(c'b) and on ¢ € Homy (B, Ap ) by
(a)(b) = o(¥(b)).) O

DEFINITION 2.5. Suppose K C, F C KPS and MNis a power of p. If B maps to
H'(F,W)y and v € G, we will write Ev(y) = Evp(y) € Homu (B, Ap,y) and
E‘;q = E‘K/mB € Homn (B, Apa) for the images of Evg(y) and Evy g under the
map of Lemma 2.4. Thus

(Eve()(d) = > (Ev())mbn™", Eves®)= Y. BEvemb)y~".
neGal(F/K) neGal(F/K)

The next two results, Theorems 2.6 and 2.7, are crucial for the proof of Theorem

I1.3.2 and Proposition 1.6. They are restatements of Theorems IV.5.4 and 1.7.3(ii),
respectively, in the language of these evaluation maps.
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THEOREM 2.6. Suppose ¢ is an Euler system, K C; F C Ko, M is a power of
P, t € Rrm, 9 € Remr 15 a prime not dividing v, and Kr. p ts the derivative
class constructed in Chapter 1V §4. Then

Ev(Frg)(kpe,nr) = Evg (K pyeqmr)-

PROOF. Suppose p € G . Theorem IV.5.4 applied to the Euler system {pcp(.) }
shows that, with Qq(z) as in Lemma IV.5.2,

Ev(Frq)(phren) =00 q-(77") ((prpear) (Frq))
=00 Qq(Fr; ) ((prpen)(Fry))
= 0((prr,eq,m)(0q))

= Evq(prreq,m)-

(Note that one consequence of Theorem IV.5.4 is that (pkrq,n)(0q) € Wit so
Evq(pkr,eqm) does not depend on any choice made in extending 6 from WJZ! to
WT=1) The theorem follows immediately. O

NoTAaTION. If B is a Gg-module, v is a place of K, and K C; F C K, we will
abbreviate

Fv:F®KKv:®w|vov

Hl(Fv,B) = @wlle(Fw,B),

H}(Fy, B) = ®yuH}(Fu, B),

Co = DyluCw € HY(F,, B) for every ¢ € H(F, B).

There is a natural action of Gal(F/K) on H'(F,,B). Concretely, every o €
Gal(F/K) induces an isomorphism

HY(F,,B) = HY(F,,,B)

for every w, and summing these maps over w lying above v gives an automorphism
of HY(F,, B); see also Proposition B.5.2. In applying Theorem 1.7.3 over the base
field F' instead of K, all of the maps are Gal(F/K)-homomorphisms.

THEOREM 2.7. Suppose K C,F C Koy, M is a power of p, tq € Rp .y and q
is a prime in Rp . Let Xpe and Ypeq denote the set of primes of K dividing pr
and prq, respectively. Then

a:Evy (8= (F, War)) E"Z‘zm (Fws,) (Frg) = 0.

PROOF. Note that Evg(SZ#s(F,Wy)) C Apa and Evs, . (rw;,)(Frq) be-
longs to the Ag p-module Hom(Sy,, (F, Wj,), D).

Suppose ¢ € Sy, (F,W},) and d € 81 (F,Wy). Theorem 1.7.3(ii), applied
with ¥ = ¥j¢q and 3o = X, shows that (¢, d)q = 0, where (, )qg =3 q,(, )q is
the sum of the local pairings of Theorem I1.4.1 at primes above q.
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Let 9 be the prime above g corresponding to our choice of Frq and o4. Consider
the diagram

HYFa,W3)  x HNFa,Wy) -2 o/mM0

! ! Jos

Wi /(r—OWh x (W)= 2 o1)/Mo)

g ] o
O/MO X oMo  —“—  O/MO
where the upper part (including the ambiguity of sign) comes from Lemma 1.4.7 (so
the upper left and upper center vertical maps are isomorphisms given by evaluation
at Frq and o4, respectively), £ is the chosen generator of Z, (1) from which we defined
0q, {, Yw,, is induced by the natural pairing W3, x Wiy — O(1), and the pairing
on the bottom is (x,y) — a,zy. Since a, annihilates (W™=1)/(W7=1)4;,, it follows
from Definitions 1.1 and 2.1 of 8* and 0 that the bottom commutes. In other words,
ar (e d)a = £a,0((d)(59))9" () (Fry)) = £a, Bvg(d)BV* (Fro)(c):

Therefore

(a-Evg (V' (Frg)) () =ar D~ Evglpd)(Ev*(Frg))” (¢)
pEGal(F/K)

=0 Y Evg(pd)Bv(Fre)(pe)
pEGal(F/K)

—ta, Y (pcpda
pEGal(F/K)

= ta, Z (¢, d)qe = £a,(c,d)q = 0. O
peGal(F/K)

COROLLARY 2.8. Suppose K C, F C Ko, M is a power of p, v € Rpm, and
v €1Gq,. . Then

a:Ev(y)(Kpen) EVEEW (F’WIT/I)(W) =0.

PrOOF. Fix a finite Galois extension L of F (g, (O%)Y/M Wyy) such that the
restrictions to L of k¢ ar and of Sy, (F, Wy, ) are zero (by Lemma 1.5.7 Ss_ (F, W3;)
is finite, so such an extension exists). Let N be the ideal of Definition II.1.1
corresponding to c. Choose a prime q of K prime to tA (and a prime Q of K

above q) such that Fry =~ on L.
By Lemma IV.1.3, g € RF ar,-. Thus Theorems 2.6 and IV.5.1 show

E\{](W)(EFJ,M) = E\‘/’q(ﬁF,tq,M) € E\\;q (Szmq (F, WM))a

and the corollary follows from Theorem 2.7. O

3. The kernel and cokernel of the restriction map

Let AV be the ideal of Definition II.1.1 corresponding to ¢. By Lemma VI.1.3(i)
applied to T'® T*, we may twist T by a character of I" if necessary to assume that,
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in addition to (1), for every prime A of K dividing A/, the decomposition group of
A in Gk contains an element vy, with the property that

R =1 (T*)anzl =0 for every n > 0. (5)

(Recall that by Proposition VI.2.1 and Theorem VI.3.5, each of the Theorems I1.3.2,
I1.3.4, and 11.3.3 holds for T if and only if it holds for a twist of T'.) In particular,
if KC,F C Ky and X is a prime of F dividing A, then WEF (W*)&r WEFx and
(W*)EFx are finite.

DEFINITION 3.1. We define several ideals of A which will play a role in the
proofs below. If B is a A-module, Anny (B) will denote the annihilator in A of B.
Define

Anny (W) if rankz I' > 1,
Aglob = a G .
AHHA(W KOO/(W Koo )div) if ' = Zp,

If v is a place of K and w is an extension of v to K, let D,, denote the decomposition
group of v in I, Z,,, the inertia group of w in Gk, and

Koo,w =Ug Ce FCKo Fw-

Define
Annpp,j (WCGHKoow) if v | p and rankz, D, > 1,
Ay = $ Annpyp, ) (W /(WK )giy) if v | p and Dy, = Z,,
Annoyp, (W /(W) aiv) if v f p,
An = H AyA.
WIN
We define A3, Ay, and A}, in exactly the same way with W replaced by W*.

LEMMA 3.2. The ideals Agioh, An, Agjop,, and Ay, defined above have height
at least two in A.

PrRoOOF. This is clear from the definitions of these ideals. O

LEMMA 3.3. Suppose K C,F C Ko and i > 1.

(1) HY(Koo/F,WCk) is finite and annihilated by Agio -
(il) H'(Koo/F,(W*)Cx) is finite and annihilated by A%,
(iil) If v is a prime of K above p and w is a prime of Ko above v, then

HY (Koo Fu, (W) 95w is finite and annihilated by AZ.

PROOF. Let W/ = WCKee  (W*)GKeo or (W*)9 . and let G = Gal(K o /F),
Gal(Kw /F), or Gal(Koo,w/Fuw), respectively. By (5), there is a v € Gp, C G
such that T7=! = (T*)Y=! = 0. Let 4 € " denote the restriction of v to K.

Since T is abelian, the annihilator of W’ annihilates H*(G, W') for every i. If
f(z) = det(1 —vyz|T & T*) € O[z], then the Cayley-Hamilton theorem shows that
f(371) annihilates W', so in particular f(5!) annihilates H* (G, W").

But G acts trivially on H*(G, W), so it follows that f(1) annihilates H*(G, W’).
Our hypothesis on ~ ensures that f(1) # 0, so it follows without difficulty (since G
is finitely generated and W’ is co-finitely generated) that H(G,W’) is finite.
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This proves the finiteness in all cases, and the annihilation when rankz, (G) > 1.
Suppose now G = Z,,, and use the exact sequences

HY(G, Wiy) — HY(G,W') — H'(G, W' [Wgy,) — H™HG, W)
If i > 1 then H(G,W/;,) = 0 because G has cohomological dimension 1, and if &
is a topological generator of G then
HY (G, Wh,) = Wi /(0 = )W, =0
because Wi, /(o — 1)W),, is a quotient of W}, /(¥ — 1)W};,. Thus for every i > 0
HY(G,W') = H'(G,W' /W)

so we see that the annihilator of W’/W/, ~annihilates H'(G,W’) in this case as
well. O

PRrROPOSITION 3.4. Suppose K C; F C Ko, and M is a power of p.
(i) The kernel of the restriction map
HY(F,W) — HY (K., W)%r
is finite and is annihilated by Agiob-
(ii) The kernel of the natural map
HY(F,Wy) — HY(F, W)
is finite, bounded independently of M, and annihilated by Annp (W Grs).
(iii) The cokernel of the restriction map
S, (F,W*) — Sz, (Koo, W)
is finite and is annihilated by Ag AL
(iv) If Ss, (KOO,W*)GF is finite, then there is a power Mp of p such that if
M > Mp is a power of p, then A3, A\, annihilates the cokernel of the
natural map
Ss, (F,Wip) — S, (Koo, WH)CT.
(v) The cokernel of the natural map
Szp (F, WITJ) — Szp (F, W*)M
1s finite and bounded independently of M.

PROOF. The inflation-restriction exact sequence shows that the kernel of the
restriction map in (i) is H (Ko /F,W%), so (i) follows from Lemma 3.3(i).
Lemma [.2.2(i) shows that the kernel of the map in (ii) is W%F /MW EF  which in
turn is a quotient of a quotient of WE&F /(WEF )y, and (ii) follows.

Let resk_ denote the restriction map from H(F,W*) to H' (K, W*)F. As
in (i), the inflation-restriction exact sequence and Lemma 3.3(ii) show that A
annihilates the cokernel of resx_ and hence of

*

glob

TeSK o

resg (Sx, (Koo, W*)9F) “252 Sy (Koo, W*)OF
as well. Since K, /F is unramified outside primes above p,

resg! (Sx, (Koo, W*)97) € S¥oV (B, W)
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and we have an exact sequence

0 — S, (F,W*) — resi (S, (Koo, W) ")
— By lpH (Fuo/ Fuy (W) 500 ) @ By wtp How (Fuors W) [ H }(Fop, WF).
Now (iii) follows from Lemmas 3.3(ii) and I1.3.5(iii).
Suppose further that Sy, (K, W*)F is finite. Since
Sy, (F,W7) = lim Sy, (F, W),

we can choose Mp so that the image of Sx, (F, W}, ) in H' (K, W*) contains the
image of resx_ (Sz, (F, W*)). With this choice (iv) follows from (iii).
By Lemma 1.5.4, the map S¥»(F,W},) — S¥¢(F,W*)) is surjective. Thus
the cokernel in (v) is isomorphic to a subquotient of
Duipker (H' (Fuy, Wi;) — H' (Fy, W¥)) .
For each w dividing p, Lemma 1.2.2(i) shows that the above kernel is
(W*)Sre [M(W*)Sre,
which is a quotient of the finite group (W*)%#w /((W*)%w )45, and hence is bounded
independently of M. This proves (v). O

DEFINITION 3.5. If € A, we will denote by n® the image of 7 under the
involution of A induced by v + y~! for v € . Similarly if A is an ideal of A we
will write A°® for the ideal which is the image of .4 under this involution.

We will use repeatedly below that if B is a A-module and A is an ideal of A
which annihilates B, then A® annihilates Hom (B, D).

Recall that Qo = Koo (1)(W, pyee, (O5)1/P7).
LEMMA 3.6. (i) If c € HY (Koo, W) and Ev(y)(c) = 0 for every v € Gq.__,
then arAnnp (HY Qoo /Koo, W))e =0,
(ii) a; Annp(H'(Qeo /Koo, W))* Hom(H' (Koo, W), D) C OEv(Gq_.),
(iil) a; Anng(HY Qoo /Koo, W*))* X0 € OBV (Gq..).
Proor. Unwinding the definition, we see that the dual of Ev on Ggq__ is given
by the composition

I‘GSQOo

H'(Kw, W) —= Hom(Gq__, W)%%=~
. Hom(Ga_,W/(r — )W) -2 Hom(Gq_,D). (6)
The kernel of the first map is H'(Qs /Ko, W). The kernel of the second map is
Hom(Gq__, W)%%~ NHom(Gq_, (T — 1)W).

If ¢ belongs to this intersection, then ¢ (Gq_ ) is a Gk_-stable submodule of
(1 —1)W. The kernel of § is W4(T=0/(r — 1), which has the same order as
W7T=1/WI=1 by Proposition A.2.5 (applied with ¢ = 7~!). Thus the product of
the kernels of the second and third maps is annihilated by a..
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The assertion that Ev(vy)(c) = 0 for every v € Gq__ is equivalent to saying that
¢ maps to zero under (6), so this proves (i). Applying Homep (-, D) to (6) yields

Go. ®0 2% Hom(H' (K, W),D)

and (ii) follows. The proof of (iii) is the same (except that in that case the third
map of the analogue of (6) is induced by 6*, which is injective). O

LEMMA 3.7. Suppose I' = Z,, and either K is imaginary quadratic or K is
totally real and Leopoldt’s conjecture holds for K.

(i) If Gk, acts trivially on T then Xoo/Annp(T) X is finite.
(i) If Gk, acts trivially on T(—1) =T ® O, then Xoo/Annp (T(—1)) X is
finite. ‘

PROOF. Since we have assumed (Hyp(K,V)) that V is an irreducible G__-
representation, the situations (i) and (ii) can only arise if rankpT = 1 and T is a
twist of O or O(1), respectively, by a character of T'.

Suppose p is a character of I'. If we replace T by its twist T ® p, then W* is
replaced by W* @ p~!, Proposition VI.2.1(ii) shows that Sy, (Ko, W*) is replaced
by Ss, (Koo, W*) ® p~ L, s0 X is replaced by Xoo ® p. Also Anny (T) is replaced
by Tw,-1(Anna (7)) by Lemma VI.1.2(ii) (where Tw, : A — A is the map of
Definition VI.1.1 induced by v — p~1(y)y on T'), and similarly for Anna (T'(—1)). It
follows easily that X, /Anny (T) X and Xoo/Anna (T(—1)) X remain unchanged
as O-modules. Thus both assertions of the lemma are invariant under twisting by
characters of T', so we may assume that T = O for (i) and T = O(1) for (ii)
(although because of this twist we can not assume (5) for this proof). Then in
both cases we are trying to show that X../J X is finite, where J denotes the
augmentation ideal of A. We may as well suppose that O = Z,,.

Suppose first that 7 = Z,(1). Then W* = Q,/Z, and H' (K., W*) =
Hom(Gk.,,Qp/Z,), so by the example of Chapter I §6.1, X, = Gal(Loo/Koo),
where L, is the maximal abelian p-extension of K., such that all primes are un-
ramified and all primes above p split completely in Lo, /K. A standard Iwasawa
theory argument ([Iw3] §3.1) now shows that X /J X = Gal(L/K) where L
is the maximal abelian extension of K in L., and that this Galois group is finitely
generated.

If K is totally real and Leopoldt’s conjecture holds for K, then K has no
extension with Galois group Zg, so L/K is finite. If K is imaginary quadratic
then K has a unique extension with Galois group ZZ, but no prime above p is
infinitely split in this extension, so again L/K, is finite. This proves the lemma
in this case.

Now suppose T' = Z,, so W* = p,. By Proposition 3.4(iii), the map

SEP (Ka l*l’poo) I SZP (Kooa IJ’pQO)GK = Hom(Xoo/onoa QP/ZP)

has finite cokernel (note that even though (5) does not hold for W, it is satisfied
for W* so Proposition 3.4(iii) holds). Since Leopoldt’s conjecture holds for K,
Corollary 1.6.4 shows that Ss,, (K, p,~) is finite. This completes the proof. O
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4. Proof of Theorem II.3.2

In this section we will prove Theorem I1.3.2. The general idea is that if ¢ ¢
HL (K, T)tors, then we can use Corollary 2.8 to construct a nonzero annihilator of
X, and hence X, is A-torsion.

LEMMA 4.1. X, is a finitely generated A module.

PRrROOF. Let J denote the augmentation ideal in A. Then X /TXo =
Hom(Ss, (Koo, W*)GK,D). Thus by Nakayama’s Lemma, to prove the lemma we
need only show that Hom(Ss, (Koo, W*)9% D) is finitely generated over O.

By Proposition 3.4(iii), the cokernel of the restriction map

Ss, (K, W*) — Ss, (Koo, W*)“

is finite, and by Lemma 1.5.7(iii), Hom(Sg, (K, W*), D) is finitely generated. This
proves the lemma. O

LEMMA 4.2. Suppose X is not a torsion A-module. Define

J={ye1Ga, :Ev'(7) ¢ (Xoo)tors}

Then the subgroup of Gx generated by J contains an open subgroup of Ga__ .

PROOF. By Corollary C.2.2 (applied with F = K), H(Qo0 /Koo, W*) is a
torsion A-module. Therefore if X is not a torsion A-module, Lemma 3.6(iii)
shows that there is a 9 € Gq_, such that Ev*(y0) ¢ (Xoo)tors: Then either 7 or
70 belongs to J, so J is nonempty.

Since X, is finitely generated by Lemma 4.1, (X )tors 1S @ closed submodule
of Xo. The map Ev* is continuous, so J = (Ev*) "N X — (Xoo)tors) N 7Gaq is
open in 7Gq__, and the lemma follows. O

PrOOF OF THEOREM II1.3.2. Let ¢ be the Euler system of Theorem I1.3.2. We
will show, under the assumption that X, is not a torsion A-module, that cx o €
H;O (K7 T)tors-

Suppose that X, is not a torsion A-module. Fix a « in the set J of Lemma
4.2, i.e., v € TGq_, such that Ev*(y) ¢ (Xoo)tors-

Suppose K C, F' C K and M is a power of p. Let kpay = KxFr1,m be the
derivative class constructed in Chapter IV §4. By Lemma IV.4.13(i), kg is the
image of cp under the injection

HY(F,T)/MH"(F,T) — H*(F,Wy).
By Corollary 2.8,
GTEV(W)(’@F,M) EVZ‘EP(F,W]Q)(’Y) =0.

Since by definition the map E‘;(v) factors through restriction to K, and for every
Fc, F

(kpar)p = (Corpryphp a)p = Y pEE M,
pEGal(F'/F)
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it follows that the restriction of E‘Kz('y)(/sp/,M) € Apr prto Fis E;('y) (krpa) € Ap -
Thus lim Ev(y)(kpa) € A and

F,M

a,lim Ev(y)(kpar) Ev¥(y) = 0.

F,M

Since Ev*(y) ¢ (Xoo)tors it follows that liﬂlﬁ\;(’y)(ﬂp,]\/]) = 0. Since this holds
for every v € J, Lemma 4.2 shows that it holds for every v in an open subgroup of
Gq_,. Since an open subgroup has finite index, and A is torsion-free, we conclude
that for every F', every M, and every v € Gq__,

Ev(y)(krn) = 0. (7)

We will show that this is not compatible with the assumption that cx . = {cr}r ¢
H;o (Ka T)tors~
Write (kpar) k., for the image of kg s in H' (Ko, W). By Proposition 3.6(i),
it follows from (7) that
aTAnnA(Hl(QOO/KOO, W))(KF,M)KOO =0.

But Proposition 3.4(i) and (ii) show that the kernel of the map H(F,Wy;) —
HY (Ko, W) is finite and bounded independently of M, so we conclude that there
is an integer m > 0, independent of M, such that

mAnnp (HY (Qoo/ Koo, W))kp s = 0.
Since kp as is the image of cp under the injection
HYF,T)/MH"(F,T) — H"(F,W)

(Lemma 1V.4.13(i)), it follows that mAnns(H'(Qs /Koo, W))cr is divisible in
HY(F,T), and hence by Proposition B.2.4

mAMA(H (Qoo /Koo, W))er = 0.

Using Lemma 1.2.2(ii) to control the torsion in H!(F,T) we see that for every
KC. FCKy

Anny (W) Annp (H (Qoo /Koo, W))er = 0.

But this annihilator of cg is independent of F', and by Corollary C.2.2 applied with
F = K, it is nonzero as well. Thus Annp (W% )Anny (H(Qeo/ Koo, W)) C A is
a nonzero annihilator of ¢ o, € HL (K,T). This contradicts the assumption that
Crk.00 & HL (K, T)tors, and completes the proof. O

5. Galois equivariance of the evaluation maps

For the proofs of Propositions 1.4 and 1.6 in the following sections, it would
be convenient if Gg_, were a A-module and Ev and Ev® were A-module homomor-
phisms. Unfortunately this makes no sense, since Gq__ is not a A-module. We will
get around this be defining an action of a subring of A on a quotient of Gq__, and
Ev and Ev* will behave well with respect to this action.
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PRrROPOSITION 5.1. There is a subgroup Ty of finite index in T', characters

X, x* : To — O, an abelian extension L of Qu, and an action of Z,[[To]] on
Gal(L/Q) such that

(i) Ev and Ev® on Gq_ factor through Gal(L/Q),
(if) if n € Ty and v € Gal(L/Qs) then
Ev(y") = x(mn(Ev(y)), Ev'(y") = X" (mn(Ev"(7)).

PROOF. Let L be the maximal abelian p-extension of
Koo (ppoo , W) = Koo (e, W) = Koo (W, W7).

Then Q4 C L, and every cocycle in H (K, W) or H'(K o, W*) vanishes on G,
so (i) is satisfied.
Consider the diagram of fields in Figure 2. By Proposition C.1.7, there is a

Ky

|
K

FIGURE 2

finite extension Ky of K in K (W) N K such that the center of Gal(K(W)/K)
maps onto Gal(K(W) N K /Kp). Define

FO = Gal(Koo/Ko)

Fix once and for all a set of independent topological generators {71,...,74} of To,
and for every i fix a lift 4; € Gal(K oo (ppe, W)/Kp) of 7; such that the restriction
of 7; to K (W) belongs to the center of Gal(K(W)/K). Since Koo (p,e, W) is the
compositum of K (W) with an abelian extension of K, each 7; belongs to the center
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of Gal(Koo(tye, W)/K), so these choices extend by multiplicativity to define a
homomorphism
Ty — Gal(Koo(Npoo,W)/Ko),
whose image lies in the center of Gal(Koo(pty~,W)/K), which is a section for
the projection map Gal(Ko(t,,W)/Ko) — T'g. We will denote this map by
v +— 4, and we will use this map to define an action of I’y on Gal(L/Q): for
v € Gal(L/Q) and n € Ty, define
v =iyt

This definition extends to give an action of Z,[[I'¢]] on Gal(L/Q). It is not
canonical, since it depends on our choice of the 7;.

By Lemma C.1.6, since V is assumed irreducible, every element of the center
of Gal(K(W)/K) acts on W by a scalar in O*. Thus the choice above defines a
character

x:To— 0%, x(n) =1 € Aut(W).

Similarly, if n € Ty then 7 belongs to the center of Gal(K(W*)/K) so we get a
second character

X :To— OF, X" (n) =17 € Aut(W™).

Suppose ¢ € HY (Ko, W), v € Gal(L/Q), and n € Ty. Since Ev(y) €
Hom(H! (K, W), D),

(Ev(y)(e) = Ev()(n~"e) = 0((n~"e)(7))

In other words

0~ (c(v")) = x(n~H)Ev(y")(0).

Ev(y") = x(mn(Ev(y)),

and similarly with Ev* and x*. This proves (ii). O
Recall the involution 7 — n® of A given by Definition 3.5

PROPOSITION 5.2. Suppose X' is a A-submodule of X, and X,/ X' is pseudo-
null. Then there is an ideal Ay of height at least two in A such that for every
KC F C Ky,

Agar Annp (W) Annpy (H' Qoo /Koo, W)) " Hom(H' (F, Wy;), D)
C OEv((Bv*)"H(X') N Ga_ ).

In other words, if
¥ € AgarAnny (W =) Anny (H' Qoo /Koo, W)) "Hom(H' (F, Wy;), D)

then there are v1,...,v € Ga., and c1,...,c; € O such that Ev*(y;) € X' for

every i and
k

Z BV (mwy (1) = 9.

i=1
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PROOF. The general proof is quite tedious. However, there is a simple proof
when I' 2 Z,,. In that case X /X’ is finite, so (Ev*)~1(X’)NGgq_, has finite index
in Gq__, so by Proposition 3.6(ii), OEv((Ev*)~}(X’) N Gq_ ) contains a subgroup
of finite index (not a priori a A-submodule) of

arAnnp (H (Qoo/ Koo, W) Hom(H' (Ko, W), D).
But every subgroup of finite index contains a submodule of finite index, and hence
there is a 7 > 0 such that
Mg, Annp (H Qo) Koo, W) Hom(H (K o, W), D)
C OEv((Ev") 1 (X')NGq.)
where we recall that M is the maximal ideal of A. By Proposition 3.4(i) and (ii),

é]ObAnnA(WGKoo )" annihilates the cokernel of the map Hom(H' (K, W),D) —

Hom(H'(F, W), D), so the proposition is satisfied with Ay = M7J A3, (which
has height at least two by Lemma 3.2).

We now turn to the general case. Let I'g, L, x, and x* be as in Proposition
5.1. We define

Twy : O[[To]] — O[[To]] by v x(7)v

and similarly for Tw,-, and then Proposition 5.1 shows that for every n € Z,[[I'o]]
and v € Gal(L/Q)

Ev(y") = Twy(n)(Ev(y)), Ev'(y") = Twy-(n)(Ev"(7)). (8)

Note that a pseudo-null A-module is also pseudo-null as a Z,[[I'¢]]-module, and
conversely if A is an ideal of Z,[[I'¢]] of height at least two then AA is an ideal of
A of height at least two.

Define

A= Tw ! (Annory) (X /X)) N Zy[[To]].

Since X,/X’ is assumed to be a pseudo-null A-module, A is an ideal of height at
least two in Z,[[I'¢]]. By (8),

Ev*(AGal(L/Qu)) = Tw,- (A)Ev*(Gq) C X/,
and by (8) and Proposition 3.6(ii), for every K C; F C Ko
OEv(AGal(L/Q0)) = OTw, (A)Ev(Go..)
> Twy (A)a, Annp (H (oo / Koo, W) Hom(H' (Ko, W), D).
By Proposition 3.4(i), (ii), the image of the composition
Hom(H' (Ko, W), D) — Hom(H'(F,W),D) — Hom(H'(F,Wy;),D)

contains
Ao Anny (W) "Hom(H (F, Was), D).

Combining these inclusions proves the proposition, with Ag = A, Twy(A), which
has height at least two by Lemma 3.2. O
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6. Proof of Proposition 1.4

Proposition 1.4 is very easy to prove in the following (fairly common; see the
examples of Chapter III) special case. Suppose that hypotheses Hyp(K.,T) are
satisfied (so @, = 1 by Lemma 1.3(ii)), O = Z,, and H'(Qs /Koo, W*) = 0. Use
(2) to choose a sequence z1, ...,z € X such that ®Az; =2 GA/f;A. By Lemma
3.6(iii), under our assumptions we have

Ev*(rGq_) =Ev' (1) + Ev'(Gq.) = Ev'(7) + Xoo = X0,

so Proposition 1.4 holds with these z; and with g; = f;A.
The rest of this section is devoted to the proof of Proposition 1.4 in the general
case, which unfortunately is more complicated.

We say that two ideals A and B of A are relatively prime if A + B has height
at least two.

LEMMA 6.1. char(X) is relatively prime to each of the ideals
Annp (W), Ay (H' Qoo /Koo, W), Annp(H' Qoo /Koo, W*))*.

PROOF. The proofs for all three ideals are similar. If W% is finite or if
rankz (I') > 1 then Anny(WS%%=) has height at least 2 and the first assertion
holds trivially. We have assumed that V is irreducible over Gx_, so if W& is
infinite then Gk _ acts trivially on 7. Thus (using hypothesis Hyp(K/K)) the
first assertion follows from Lemma 3.7.

The other two assertions follow similarly, using Lemma 3.7 and Corollary C.2.2.
We sketch briefly the proof for the third ideal.

Corollary C.2.2 applied to T™*, with F' = K, 2 = Q, gives three cases. In
case (i), H'(Qs /Koo, W*) is finite, so Annp (H' (Qoo /Koo, W*)) has height at least
two, and hence is relatively prime to everything. In case (ii) (resp. (iii)), Gk acts
on T* via a character p (resp. €cycp), and H'(Qs /Koo, W*) has a subgroup C of
finite index on which Gk acts via p. Then Gk acts on T via acycp_l (resp. p~ 1),
so Anna (C)°* D Annp (T(—1)) (resp. Anna(C)°® D Anny (7). Since

Annp (H'(Qoo /Koo, W*)) D Annp (C)Anny (HY (Que /Koo, W*)/C)

and the latter ideal has height at least two, the lemma in this case follows from
Lemma 3.7. O

LEMMA 6.2. Suppose B is a torsion A-module, x,y € B, g»,9y € A and
Annp(z) C g A and Anna(y) C gyA. Then there is an n € Z such that

Annp(z + ny) C [gz, gy]A
where [gz, gy| denotes the least common multiple of g, and g,.
PRrROOF. Suppose P is a (height-one) prime divisor of [g,, g,], and define
Sp={n€Z:Anny(z+ny) ¢ ‘,Bord‘*’[g”’gy]}.

Recall that p is the maximal ideal of O. We will show that Sy has at most one
element if P # pA, and Sy is contained in a congruence class modulo p if P = pA.
Then it will follow that Z — Uy Sy is nonempty, and every n in this set satisfies the
conclusion of the lemma.
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Suppose n,m € Sy, and let A = Anna (2 + ny) N Anny (¢ +my). Then A ¢
PB*, where k = ordg[gs, g,]. But (n—m)A annihilates both y and z, so (n—m).A C
B* and we conclude that n —m € B. If P # pA it follows that n = m, and if
B = pA then n =m (mod p). This completes the proof. O

LEMMA 6.3. Suppose B is a finitely-generated torsion A-module, pseudo-iso-
morphic to ®%_ A/h;\, where hiyy | h; for 1 < i < k. Suppose we are given a
subring Ao of A such that A is finitely generated as a Ag-module, a Ag-submodule
By C B, and an element t € B such that t and By generate B over A. Then there
are elements x1 € t + By and xo,... ,x, € By such that

(i) Azq = A/by where by C hiA and hiA/by is pseudo-null,
(i) for every j, 2 < j <k, there is a split exact sequence

Jj—1 J
0— ZAwi — ZAxZ— — A/hjA — 0.

i=1 i=1
Ift = 0 then we can replace (i) by
(") Az =2 A/hiA, i.e., (ii) holds for j =1 as well.

Proor. We will prove the lemma by induction on k.
If A is an ideal of A then char(A/.A) is the unique principal ideal containing A
with pseudo-null quotient. For every x € By write

Ay = char(A/Anny(x)).

By Lemma 6.2 (applied successively with = ¢ and y running through a sequence of
elements of By) we can choose z1 € t+ By such that A,, C A, for every x € t+ By.
Since t and By generate B over A, we must have A, = h1A, so (i) is satisfied. This
proves the lemma when k& =1 and ¢ # 0.

If t = 0 then choose g € Ag, prime to hi, which annihilates the pseudo-null
A-module hiA/Annp(x1), and replace x; by gzy. This element has annihilator
exactly hiA, so this completes the proof when k = 1.

If k > 1, choose z; as above. Let B’ = B/Ax1, let B{) be the image of By in B,
and let ' = 0. Then B’ is pseudo-isomorphic to ©%_,A/h;A, so by the induction
hypothesis (in the “¢ = 0” case) we can choose T, ... ,T; € Bj leading to split
exact sequences

j—1 J
0— > Az — > Az — AJh;A — 0
i=2 =2
if2<j<k.
Now choose x; to be any lift of Z; to By. We claim the lemma is satisfied with
this choice of x1, ... ,xx. It will suffice to check that the exact sequences
J J
O—>Ax1—>ZAxi—>ZAJEi—>O (9)
i=1 i=2

split for 2 < j < k.
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Let h = Anny(B). Then h C hyA and k] 'h is pseudo-null. By our induction
hypothesis we can choose elements ¥s, ... ,Ji € ZLQ AZ; such that Ag; = A/h;A
for each ¢ and Zf:z Ay; = Zf:z AZ;. Let y; be a lift of g; to Zle Az;.

For each ¢ we have h;y; € Ax1, say h;y; = ¢;x1. Then h;lf) annihilates ¢;x1, i.e.,
¢ih C h;bh1, and we conclude that h; divides ¢;. Now the map §; — y; — (¢;/hi)x1
gives a splitting of (9). O

PrRoOOF OF PROPOSITION 1.4. Recall that we have a pseudo-isomorphism
Define a A-submodule

Xo = AEvV* (1) + AEv*(Gq..)
of Xoo. Then X D Xo D Xop NarXs, and Lemmas 3.6(iii) and 6.1 show that
(arXo0)/(Xo NarXs) is pseudo-null. Thus we can find a new injective pseudo-
isomorphism
@i A/ gih — Xy
where g; € A, gi | fi, fi | argi, and giy1 | g for every i.

Apply Lemma 6.3 with B = Xy, h; = g;, Bo = Ev*(Gq_), and t = Ev*(7)
to produce a sequence x1,...,z, € Xo. (Note that By satisfies the hypotheses of
Lemma 6.3 with Ag = Twy«(Zp[[T0]]), where I'y and x* are as in Proposition 5.1,
and Twy- is as in the proof of Proposition 5.2.) Define z; = 21 € Ev*(rGq._ ),
g1 = b1, and for 2 < i <rlet z; = 21 + 2; € Ev'(7Gq_ ) and g; = ¢;A. Then the
conclusions of Proposition 1.4 follow immediately from Lemma 6.3. O

7. Proof of Proposition 1.6

In this section we will prove Proposition 1.6, and thereby complete the proof
of Theorems I1.3.3 and 11.3.4 begun in §1. Keep the notation of §1. In particular
recall that

Zoo =3 Az = @]_1A/g; C Xoo
=1

where the z; and g; are given by Proposition 1.4.
If o is a Selmer sequence of length k, as defined in Definition 1.5, define

k
Zg =Y AEV*(0:) C Zno.
i=1

LEMMA 7.1. If o is a Selmer sequence of length k then Zy = @F_ | A/g;A and
Zy 1s a direct summand of Zo. If k < r and o’ is a Selmer sequence of length
k+1 extending o, then Zo//Zo =2 A/gk+1-

PRrROOF. Define Y;, = Zle Az;. By Proposition 1.4(iii), Y3 = &% ;A/g; and
there is a complementary submodule Y, C Z, such that Y3, @Y, = Z,,. The image
of Zy + Y/ in Zo/MZ, contains the image of Y, + Y, = Z, so by Nakayama’s
Lemma Z, + Y, = Zo,. We will show that Z, NY; =0, and thus Zo, = Z, & Y}
and

Zo 2 20V 2V, 2 aF A gl
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If £ < r and o’ extends o, we can repeat the argument above with k replaced by
k+1. We can choose Y}, to be contained in Y}/, and then Y//Y, | = A/gr 41 and
Zor @Y1 = Zoo = Zo ® Y,

SO
Zor = Zo @Y/ Y41 = Zo © NGt
It remains to show that Z, NY, = 0. For 1 <14 < k write
EV*(O'Z') = z; +v; +w;
where v; € MY}, and w; € MY}/. Suppose
k

Z aiEv* (01) S Yk/
i=1

with a; € A; we need to show that Zle a;Ev*(c;) = 0. Projecting into Y it
follows that

k
Z ai(zi + Ui) =0. (10)

Using Proposition 1.4, fix generators y1,...,yr € Yi so that for every i, 1 <
i1 <k,

i
Yi=) Az = @) Ay
j=1
and Ay; =2 A/g;. We can rewrite (10) in matrix form, using these generators, as

(a1,...,a5)B € (g1A, ... ,gxA)

where B is a k X k matrix with entries in A. Modulo M, B is lower-triangular with
invertible diagonal entries (since z; € Y;, the projection of z; generates Y;/Y;_1 =
Ay;, and the v; vanish modulo M). Therefore B is invertible, and, since g; C gk
for every i < k, we conclude that a; € gy for every i. But g, annihilates Y} since
gr C g; for i > k, so we deduce that

k k
ZaiEv*(Ui) = Zaiwi =0.
i=1 i=1

This completes the proof of the lemma. O

PROPOSITION 7.2. For every Selmer sequence o, every K C, F C K, and ev-
ery power M of p, Annp(Xoo/Zso) annihilates the kernel of the map

Zoe @Ap v — Xoo @ Ap,ar.

Proor. By Lemma 7.1, Z, is a direct summand of Z,, so Zs ® Ap s injects
into Zoo ® Ap,ar. Clearly Annp (X /Zoo) annihilates the kernel of the map Zo ®
Apar — Xoo ® Ap g, so this proves the proposition. O

For the rest of this section fix a field F', KC, F C Ko. By (1), Ap/fiAF is
finite. Fix a power of Ng of p such that Nrp > |Apr/fiAr| and Np is at least as
large as the integer Mp of Proposition 3.4(iv).

Let By = (AZp)* (Ax)* Ann (Xoo/ Zoo).
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COROLLARY 7.3. If o is a Selmer sequence and M is a power of p, M > Np,
then By annihilates the kernel of the natural map

Jo ® AF,M — HOIIl(Szp(F'7 W;C[), O/MO)
PROOF. The map in question is the composition
Zo- & AF’]\/[ I Xoo & AF,M I HOID(SEP(F, WX/[), O/MO)

By (1), Sz, (K, W*)GF is finite for every F, so we can apply Proposition 3.4(iv),
and the corollary follows from that proposition and Proposition 7.2. O

If v € R, recall that ¥, denote the set of primes of K dividing pr.

LEMMA 7.4. Suppose M is a power of p, 7 is a Kolyvagin sequence, and o
is a Selmer sequence corresponding to w. Then the map of Corollary 7.3 factors
through a surjective map

Z0'®AF,M —>HOI1’1(SEP(F7WX4)/SZ F,W;&),O/MO)

pr(-n—)(

PRrROOF. Write o = (01,... ,0%) and ® = (Qy,..., Q). The image of Z, in
Hom(Ss, (F, W3;), O/MO) is equal to

Hom(Sx, (F. W,)/B,O/MO),

where
B = m ker(EVTSZP(F,W;‘/I)(Ui)’y) - ﬂ kef(Estzp(F,W;,)(FrQJ))-
1<i<k 1<i<k
vE€Gal(F/K) vEGal(F/K)

Since T' is unramified at each of the QJ, this is equal to S, . (F, Wj/). O

PROPOSITION 7.5. Suppose 1 < k < r, M > Np is a power of p, and ™ €
(K, F,M). Let ¥ = X, (x), 9 = qr. Then

CLTB()E\\//q (SZ(F7 WM)) C gk:AF,M'

PROOF. Fix M, k, and 7 as in the statement of the proposition. Let o =

(01,...,0%) be a Selmer sequence corresponding to 7w and let o’ = (01,... ,0%-1),
=% - {qh
Consider the commutative diagram
0 0

Zo @ Ap —— Hom(Ss, (F,W3,)/Ss: (F, W), 0/MO)

Za' b2 AF,M - Hom(SEp (F7 W]t[)a O/MO)
(Zo)Zg) @ Appy —2—s Hom(Sy (F, W3,), 0/MO)

| !

0 0.
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The left-hand column is exact by Lemma 7.1, and the top horizontal map is the
surjection of Lemma 7.4. Applying the snake lemma, Corollary 7.3 shows that
ker(j) is annihilated by By. The image of j is generated by Evg  (mw: (ok) =
Evs, (rw;,)(Frq), and Zo/Zor = A/gA. Hence

BOAHHAF,M(EVZ“E/(F,W; y(Frq)) C gelpr

78
By Proposition 2.7, aTﬁfq (S®(F,Wyy)) annihilates Evs, (rw;,)(Frq). This proves
the proposition. O

Recall that we have fixed a field F. If M is a power of p and v € Ry s, we
will write simply K¢ s for Kp e ar, and (ke ar) for the Ap ps-submodule Ap prke ar
of HY(F, Wyy).

COROLLARY 7.6. With notation as in Proposition 7.5, suppose in addition that
m e U(k,F, MNFg). Let vt =x(m). If n € a2By then

BV (eear) € SrHoma ((kear), Arar).
PROOF. Let M’ = M Np. By Propositions 7.5 and 1.4(ii),
nﬁ/q,sz(F,WM/) : (S‘E(F‘7 WM’) — CLTgkAF,M' C kaF,M/-

We want to divide this map by fj, at the expense of passing from M’ to M.

Since f | Nr in Ap, there is a well-defined “division by f;” map

fehp v — Arpm

which sends frg to g (mod M) for every g. Let ¢’ : S¥(F, W) — Ap s be the
composition of nEv, s=(pw,,,) with this division map.

Let ¢y, a0 and ¢prr s be the natural maps in the exact cohomology sequence

'Np, M’ LM M

HY(F,Wx,) HY(F, W) HY(F,Wyy).

If we identify Ap n, with MAp pr, we have
Evgss(rwy,) = EVqs2(mw,,) © tNp, M-

Applying Propositions 7.5 and 1.4(ii) again we see that the image of 771,3\(/% SE(F,Wnp)
is contained in fyAp ., and it follows that 9’ oty p = 0. Therefore ¢’ factors
through LM’ M, i.e.,

V' =t ouyy where 1 € Homp (ear ar (ST (F, War)), Arar).
Using Theorem IV.5.1, we also have a diagram

BV ST (rw,,)

Ke, M’ c SE(F, WM’) AF,M/

I . J/ fr' i
M/’ M

KeM € SE(F,Wyy) — Arm
NV s2mwy

It follows that

Fetb(renr) = fut (Kear) = NEVq 53 (mwa) (Fer),
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and so nEvq (e, ) = fr1. O

The following is a precise version of Proposition 1.6. Define
B = a? A3 By Annp (W= ) Annp (H Qoo / Koo, W))

where Ay is the ideal of Proposition 5.2 applied with X’ = {z € X : a;2 € MZy}
(so by Proposition 1.4(iv), X /X' is pseudo-null) and By is as defined before
Corollary 7.3.

PROPOSITION 7.7. If M > Np is a power of p and 0 < k < r, then
BY(k, F,Ne M)App C fry19(k+1,F,M).

PROOF. Let M’ = NpM. Fix a Kolyvagin sequence w € II(k, F,M’), let
t=1t(m), and fix ¢ : (ke pmr) — Apar. We need to show that

By (ke,pr)Apar C frop1W(k+1,F,M).

The idea of the proof is as follows. Ideally, we would like to find v € 7Gq__
such that
(a) Ev¥(7) € k41 + MZo,
(b) Ev(y) =1 on (ke,m7),
and choose a prime q whose Frobenius on a suitable extension of F is 7. If we can
do this then (a) says we can use g to extend 7 to a Kolyvagin sequence of length
k 4+ 1, (b) combined with Theorem 2.6 shows that ¢ (ke p) = E;fq(ntq,M/), and
Corollary 7.6 shows that the map E\x//q}qu:m is (almost) divisible by fxi1.
Unfortunately, conditions (a) and (b) on v may not be independent, and it may
not be possible to satisfy them simultaneously. Instead, we will use Proposition 5.2
to find a finite set of elements {v;} such that Ev*(y;) € MZ and such that,
instead of (b), a “small multiple” of v is a linear combination of the Ev(y;).
We now return to the proof. Let ¢ € Hom({k a7}, O/M’'O) be the homomor-
phism corresponding to ¥ under the isomorphism of Lemma 2.4. If

n € Apa? Annp (W) Annp (H (Do / Koo, W))°,

then by Proposition 5.2 (applied with X’ as defined just before the statement
of this proposition) there are vi,...,v; € Gq_ and ci,...,¢; € O such that
Ev*(vi) € (MZy) for every i and

J
ZCiEV(nt,M/)(rYi) = nvo. (11)
i=1
Fix i, 1 < ¢ < j and let o be a Selmer sequence corresponding to 7. Choose
d € 7Gq_, such that Ev*(§) = 2,41 (Proposition 1.4(i)), and define two Selmer
sequences o’ and o of length & + 1 extending o by 0}, = ¢ and o7/, = 0v;.
(These are Selmer sequences because Ev*(§) = 211 and Ev*(y;) € MZ,,.) Fix
primes q’,q"” of K lying below primes Q', Q" of F such that

FI‘Q/ = O—;c-i-l?FrQ// = O';C/_,'_l on L
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where L is a finite Galois extension of F' containing F'(gp,, Wi, (OIX()l/M/) and

such that the restriction to L of every element of the finite groups (see Lemma
L5.7) Sy, (F,W};) and 8%« (F, Wyy) is zero.

We define two Kolyvagin sequences w’,w” € TI(k + 1, F, M’) extending 7 by
setting Q). ., = Q" and Q) ,; = Q". By Corollary 7.6, if o’ € a2By we can choose
Y’ € Homp ((keq ar), Arnr), 9" € Homp ((kieqr ar), Araa)

so that .
fk+1wl(’§tq',M) = U’EVq’(’frqﬂM)
and .
fk-&-lw/,(/ftq”,M) = n/EVq”(th”,M)'
Therefore, using Theorem 2.6 for the third equality,
0BV () (ke.ar) = 1/ Bv(0 1) (Rerr) = ' Ev (0 1) (e ar)
= 1BV (Fron) (e ar) — 0/ Ev(Fro ) (e urr)
= 0/ Evgy (eqr ) = 1 BV (e )
= fer1(V" (e ar) = @' (Keqar)) - (mod M)
€ fir1V(k+1,F,M).

By (11) and Lemma 2.4, ), ci]/il\;f('yi) = 7% = n*1), so we conclude that

U.W/lb(”r,M’)AF,M C fk+1\Il(k + 17F7 M)
As 1 and 1’ vary, the products n°n’ generate B, and the Proposition is proved. [

PROOF OF PROPOSITION 1.6. Observe that Ao, A, and A}, have height at
least 2 (Lemma 3.2, Proposition 5.2); Anny (W% ) and Anny(H'(Qs0 /Koo, W))
are prime to char(X) by Lemma 6.1; Annp(Xoo/Zoo) contains the product of
a, and an ideal of height 2 (Proposition 1.4(iv)). An ideal of height at least two
necessarily contains an element relatively prime to char(X,) (since char(X,) # 0
by Theorem I1.3.2), so the ideal B defined before the statement of Proposition
7.7 contains the product of a® and an element h of A prime to char(X,,). Thus
Proposition 1.6 follows from Proposition 7.7. O



CHAPTER VIII

Euler systems and p-adic L-functions

So far we have discussed at length how an Euler system for a p-adic represen-
tation T of Gg controls the Selmer groups S(K, W*) and S(Koo, W*). This raises
several natural questions which we have not yet touched on.

e Except for the examples in Chapter III, we have not discussed at all how to

produce Euler systems. Should Euler systems exist in any generality?
e If there is a nontrivial Euler system c for T, then there are infinitely many
such (for example, we can act on ¢ by elements of O[[Gk]]). Is there a
“best” Euler system?

e Conjecturally, Selmer groups should be related to L-functions and their spe-
cial values. Is there an Euler system related to an L-function attached to
7

In this chapter we will sketch a picture which gives a conjectural, partial, an-
swer to these questions, by describing a fundamental connection between Euler
systems and (p-adic) L-functions. This general picture will rest on several layers of
conjectures, but nonetheless there are several known examples (such as the ones in
Chapter III) where the connection is proved.

The connection is made via the work of Perrin-Riou [PR2], [PR4]. Briefly,
for certain p-adic representations 7" of Gq, and subject to some vast but plausible
conjectures, Perrin-Riou shows how to view the p-adic L-functions attached to
twists of T' by characters of conductor m as elements in H. (Q(u,,),T) (or more
precisely, in the tensor product of HL (Q(u,,),T) with the field of fractions of A).
As we will see below in §3, these cohomology classes satisfy the distribution relation
defining an Euler system for T'. In other words, Perrin-Riou’s conjectural elements
form an FEuler system, and since they arise from p-adic L-functions, Theorems
I1.2.10 and I1.3.8 relate the Selmer groups S(Q, W*) and S(Qs, W*) to L-values.

1. The setting

For this chapter we will assume

o K =Q,ie., T is a p-adic representation of Gq,
o the scalar ring O is Z,,.

The first assumption is not too serious a restriction, as in general one could consider
the induced representation Indg,qT. The second is completely unimportant, and
is made only for notational convenience.

Following Perrin Riou [PR4], we will also make the more serious assumption
that V =T ® Q, is the p-adic realization of a “motivic structure” in the sense of

123
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[FPR] Chapter III, that T corresponds to an integral structure on this motive, and
that the representation V is crystalline at p.
We let D(V') denote Fontaine’s filtered vector space attached to V, i.e.,

D(V) = (Buis ®q, V) .

(By definition, the fact that V' is crystalline means that dimg, D(V) = dimq, V")
Suppose F' is an abelian extension of Q, unramified at p. Then F has [F : Q]
distinct embeddings into Be,js and we also define

DF(V) = D(EBF;,B V) = D(Indp/QV)

where Gq acts on ©r.p
dings.

Suppose F is a finite extension of Q,, with ring of integers O, and x :
Gal(F/Q) — E* is a character. Write T ® x for the tensor product of T with
a copy of Og (i.e., a free, rank-one Opg-module with a fixed generator) on which
Gal(F/Q) acts via x, and similarly for V ® x, and let

=Y, X' e0pGa(F/Q).
Y€Gal(F/Q)

LEMMA 1.1. (i) There is a natural identification Dp(V) = F ®q, D(V).
(i1) Each choice of embedding F — Byis induces an isomorphism

D(V (29 X) = GX—l(E ®Qp DF(V))
where we let Gal(F/Q) act on Dp(V) via its action on F in (i).

V' by acting both on V' and by permuting the embed-

cris

ProoOF. We have
Dp(V) = (®jiFeBe.V © Beris) 7,
so there is a natural embedding of ' ®q, D(V) into Dr(V)
a®d— @;(j(a)d).
Since V' is crystalline and F'/Q is unramified at p, Indg/qV is also crystalline, i.e.,
dimg, Dp(V) = [F : Q] dimg, V = dimq, (F ©q, D(V).

This proves (i). For (ii), let (E® V®Bms)><—1 be the subspace of E®q, V ®q, Beris

on which GQp (acting on V and Bcis, not on E) acts via x~'. An embedding
j: F < Beyis induces an embedding F ® F' — E ® B.,is, and hence (using (i)) an

isomorphism
ey 1 (E@Dp(V) =, 1 (E® F)@D(V) 5 (E®V @ Bais) -

But (E®V ® ch)’(1 is isomorphic (since we fixed a generator of our one-
dimensional y space) to (V ® x ® Beis)“ = D(V ® x), so this proves (ii). O

Let Qs = UQ,, denote the cyclotomic Z,-extension of Q, I' = Gal(Qs/Q),
and A = Z,[[I']] the Iwasawa algebra. Let H be the extended Iwasawa algebra
defined by Perrin-Riou in [PR2] §1: if we identify A with a power series ring
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Z,[[X]] in the usual way, and let Q,[[X]], C Q,[[X]] denote the Q,-vector space
of power series which converge on the open unit ball in Q,, with growth

sup |f(X)| = o( sup |log(1+ X)|")
[X|<p | X|<p

as p — 17, then H is the A-algebra
H = A ®z,(x)) (im Q,[[X]])-

We let K be the field of fractions of H.

Suppose F' is an abelian extension of Q, unramified at p. In [PR2] (see
also [PR4] §1.2) Perrin-Riou constructs® what she calls a “logarithme élargi”, a
Z,[[Gal(FQw/Q)]]-module homomorphism

Plim H'((FQ,),, T) = K @ Dp(V).
vp "
This is a generalization of work of Coleman [Co], who defined this map in the

case where T' = Z,(1). Composing with the local restriction maps we obtain a
Z,[[Gal(FQoo/Q)]]-module homomorphism

Lp:HL(F,T)=lmH" (FQ,,T) - K®Dp(V)
which will be crucial in what follows. If I/ C F then there is a commutative

diagram

HL(F,T) —£*~ K@Dgp(V)

T T 1)
HL(F',T) 22 K& Dp (V).
2. Perrin-Riou’s p-adic L-function and related conjectures
Let d = d(V) = dimq, V,
dy = dy(V) = dimq, (V") = dimq, (V)
where c is a complex conjugation in Gq, and
d_ =d_(V) =dimq, (V") = dimg, (V=) =d — d;.

Let w: Gq — (Z; )tors be the Teichmiiller character giving the action of Gg on Ky,
(if p is odd) or p, (if p = 2), and

1+pZ, ifpisodd

-1 ~
&Y =w “€eye : G I —
() A {1+422 if p=2.

Fix embeddings Q — C and Q — @.
Suppose that E is a finite extension of Q, and x : Gq — E* is an even
character of finite order, unramified at p.

1Perrin-Riou’s construction only deals with odd primes p. We will implicitly assume as part
of the conjecture below that her construction can be extended to p = 2 to produce a map with
similar properties.
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CONJECTURE 2.1 (Perrin-Riou [PR4] §4.2). Under the assumptions on T at
the beginning of §1, if r € Z™T is divisible by the conductor of x then there is a
p-adic L-function
LP(T®x) e KO AFDV* @ x ).

See [PRA] §4.2 for the properties defining this p-adic L-function (when p > 2).
For our purposes we only say loosely that Li” ) (T®x) is defined so that for characters
p of finite order of I' and sufficiently large positive integers k,

()" p(LPN(T @ X))
L’I”(V & kap_17 _k)
(archimedean period)

= (p-Euler factor) x x (p-adic period).

Here L,.(V®xwkp1, s) is the (conjectural) complex L-function of V @ yw*p~! with

Euler factors at primes dividing r removed, which has an Euler product expansion
HLAV@kap_l,s)_l. (2)
r

For primes ¢ # p where V' is unramified,

Lo(V @ xw*p,5) = det(l — Fry 'a|V @ xw*p ™) =g,
S0
LZ(V & kapila 7k) = <5>kp(det(1 - Freilz|v)|:1::x*1(€)Frg)'
Hence for such ¢, writing P(Fr; '|T;x) = det(1 — Fr, '2|T) as in Chapter II §1,

LY(T ® x) = P(Fr; |T; x " (O)Fr ) LP(T @ x). (3)

The following statement is in the spirit of the conjectures of Perrin-Riou in
[PR4] §4.4, but stronger. In fact it is so strong that this formulation is certain not
to be true in general (see Remark 2.5 below). However, one can hope that it is

“almost” true.
For r € Zt write A, = Gal(Q(p,)"/Q) and

Ar = A® Zy[Ar] = Zp[[Gal(Qoo (12,) T/ Q)])-
For f € K let f* denote the image of f under the involution induced by ~y +— v~
for 7 € Gal(Qu(11,)*/Q).

WISHFUL THINKING 2.2. Suppose v € ZT is prime to p. Then there is an
element €, € N~ H;O(Q(MT)JF,T) such that for every finite extension E of Qp, and
every character x : A, — E*,

(L8 (€)= LP (T @ x)"

REMARK 2.3. In this statement, the exterior power is in the category of A,.-
modules, and

d_ d_ d_
Lg(”T)Jr DAV HL(Q(e) T T) = K@ AG (4 Do+ (V)

is the map induced by EQ(“T)+. Recalling that €, = Y x(7)y~!, we also have a
map

1

€x * DQ(I"T)+(V) — D(V & X_l)
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from Lemma 1.1(ii) (our chosen embedding Q < Q,, gives an embedding Q(u,.) —
Beis) which induces

e;‘f’d* K® /\é;m?.}Dp(V) —-K® /\%’D(V ®x ).
Note that this makes sense even if d_ = 0, in which case 69( is the projection from

K® Q,[A,] to K® E induced by x. Thus since dy (V* ® x) = d_(V), the equality
above is an identity between two elements of K ® /\%’D(V ®@xh).

REMARK 2.4. The statement above is a strengthening and “extrapolation” (by
introducing the level ) of the conjectures of Perrin-Riou in §4.4 of [PR4]. We have
also rephrased the conjecture in terms of Lgp)(T* ® x) instead of Lsp)(T ®@x~!) by
using the functional equation [PRA4] §4.3.2; because it simplifies the formulas below.

REMARK 2.5. One reason that the optimistic statement 2.2 should not be true
in general is that it asserts that the p-adic L-functions should all be “integral” in
a strong sense. But the L-values can have denominators, coming from W Qoo ()
where W =T ® (Q,/Z,). Inspired by the theorem of Deligne and Ribet [DR] and
Stark’s conjecture [T5] (where this denominator has been extensively studied), and
Perrin-Riou’s [PR4] Conjecture 4.4.2 (and Lemme 1.3.3), one is led to the following
slightly more modest assertion which (not knowing any counterexamples) we will
optimistically call a conjecture.

CONJECTURE 2.6. Suppose r € ZT is prime to p, d_ = 1, and a € Z,[[Gq]]
annihilates W Qoo ()t |

Then there is an element £, = €% € HL (Q(p,) ", T) such that for every finite
extension E of Q, and every character x : A, — E*,

exLquuy+ (&) = x()LP(T* @ x)",

where x(a) denotes the image of o under the composition

Z,[[Gql] » A XARZ,A] 25 A®E —K@E.

Note that if T" is unramified at every prime dividing r, then
TG = TG and W) = WEQx (4)

(this is essentially Lemma IV.2.5(1): Gal(Qoo(tt,)/Qoo) is generated by inertia
groups which act trivially on 7" and W).

3. Connection with Euler systems when d_ =1

Suppose that T is as above, d_ = 1, Conjectures 2.1 and 2.6 hold, and that the
weak Leopoldt conjecture (see [PR4] §1.3) holds for T*. For technical reasons we
also assume that 7¢Q= = 0. Let N be the product of all rational primes where T
is ramified.

Fix an element o € Z,[[Gq]] which annihilates W%e=. By (4), a annihilates
WYt for every r € Z*+ prime to Np. For such r, let

€ = {gn,r} € H;o(Q(Nr)+7T)7 with &, € Hl(Qn(Hr)+aT)a

be an element satisfying the conclusion of Conjecture 2.6.
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ProprosITION 3.1. With hypotheses and notation as above, suppose r is prime
to Np and ¢ is a prime not dividing Nrp. Then for every n,

COTQn(;1,7,2)+/Qn(p7,)+fn,ré = P(FI"Z1|T*; Frg_l)gmr.

where P(Fr; ' |T* 2) = det(1 — Fr, 'z|T*) € Z,[z].

PROOF. Suppose E contains p,,) (so that all characters of A, into @X take
values in F) and x : A, — E* is an even character. Then by definition

xLaiu, 1+ (Corqq, 1 /() 6re) = S Laqu, - () = X(@LT(T" @ )"
On the other hand,

Lyt (&) = X()LP(T* @ x)".
Equation (3) shows that, after applying the involution ¢,
L} (" © )" = P(Fr [T (OFr; YL (T @ x)".
Combining these equalities shows that
L) (COrQuu, )/, &re) = L, (P T Fr )E,)

for every x, and therefore since >, €, = Q(p,)" : Q] € Ox[A,],

Lo+ (Corgu v+ /Quu,)+ &) = Lau,y+ (PFry T Fry E,).

It remains only to show that, under our hypotheses, Lg,, )+ is injective. Recall
that Lg(,, )+ is the composition

vlp n
The weak Leopoldt conjecture, which we have assumed, implies that ([PR4] (1.4.2)
and Corollary B.3.5) the restriction map

H;o(Q(Nv')+7T) - @ linIIl Dolq Hl(Qn(F”y-)jvT)
q|Np
is injective. Proposition A.2.3 of [PR4] shows that lim &, H'(Qn(p,)F,T) is
a torsion A-module if ¢ # p. Therefore the kernel of the first map of (5) is a
torsion A-module, and the definition of the second map ([PR4] §1.2.5) shows that
its kernel is torsion as well. But by [PR4] Lemme 1.3.3, the A-torsion submodule
of Héo(Q(uT)Jr, T)is TGQooWr)*, which is T%@= by (4), and by our hypothesis this
is zero. Thus EQ(“T)+ is injective and the proposition follows. O

COROLLARY 3.2. With notation as above, the collection
{&r € H(Qu(p,)",T) : n >0, r prime to Np}

defines an Euler system for (T, Qoo QNP+ Np) in the sense of Definition 11.1.1
and Remark 11.1.3, where QNP+ s the mazimal abelian extension of Q unram-
ified outside Npoo.

ProoF. This is immediate from the definition and Proposition 3.1. O
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REMARK 3.3. There is another way to think about the existence of Euler sys-
tems when d_ = 1, in terms complex L-functions. Namely, the Euler product (2)
for L(V*,s) converges (conjecturally), and hence is nonzero, if s is a sufficiently
large positive integer. This allows us to read off the value of ords—_xL(V,s) for
large positive integers k in terms of the I'-factors in the functional equation relating
L(V,s) and L(V*, s). Working this out shows that, subject to standard conjectures,

ords—oL(V ® () *p,s) = d_

for all sufficiently large positive integers k& and all characters p of finite order of
Gal(Qu. /Q).

Fix one such k. The Beilinson and Bloch-Kato conjectures then predict that
the leading term in the Taylor expansion of L(V ® (¢)~%p, s) at 0 can be expressed
in terms of, among other things, a d_ x d_ regulator. When d_ = 1, this predicts
the existence of certain special elements, and one can hope that these elements
produce an Euler system for 7' ® (g)~*.

By Theorem VI.3.5, an Euler system for 7 ® (€)% can then be twisted to

produce an Euler system for 7.

REMARK 3.4. In the next section we consider the example T' = Z,(1), which
has d = d~ = 1. Another interesting example is when T is the symmetric square
of an elliptic curve (as in Chapter III §6), so d~ =1 and d* = 2.

4. Example: cyclotomic units

In this section we discuss the example T = Z,(1). Most of what we do was
worked out by Perrin-Riou in [PR3], and in fact much of it is due to Iwasawa.

We suppose for this section that p > 2. We will show that the Euler system
of cyclotomic units discussed in Chapter III §2 arises in the way described in the
previous section. Note that d_(Q,(1)) = d(Q,(1)) =1, d+(Q,(1)) = 0.

For every r € ZT prime to p and n > 0, let

Eprr = NQu, ue)/Qu(u)+ (Grpnit = 1) € (Qulpe,)T) € HHQu(p,) T, Zy (1)),
the Euler system of Chapter III §2, and

Eroo = {Eprrtn € Hyg(Qles,) ", Zy(1)).
We will use the €, . to show that Conjecture 2.6 is satisfied in this case.
Let
w(X) =G+ X)) =1 € (2] ©2,)[X]]
and
heX)= ]  w(@+X)°-Du.(1+X)7 -1
BeEp, CZy
where 4, (X) = ¢71(1 +X)" " —1. Then h, is the “Coleman power series” attached
to €y o0, i.€., for every n > 0
h?pn 1(Cp"+1 - 1) = ép”T'

The p-adic L-functions L&” ) (Z,®x) that arise below are the Kubota-Leopoldt p-
adic L-functions, so their existence does not rely on any conjectures. The following
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proposition is essentially due to Iwasawa and Coleman; but we have translated it
into the language of Perrin-Riou, following [PR3].

ProrosITION 4.1. Ifr > 1, E is a finite extension of Qp, and x : A, — E*
is a character, then

exLqu,)+ (€roo) = 2L (Z, ® X)".

PROOF. Suppose first that » > 1. By [PR3] §1.8, §3.1 (or [PR2] §4.1.3) and
[Iw2],

Lqu,)+ (€Er0) € A® D, 1+(Qp(1) = Q(u,) " @ A®D(Qy(1)),  (6)
LP(Z, ® x) € A©D(Qy(1) ® X 1) = 6, (A® Dy, 1+ (Qp(1))), (7)

the equalities from Lemma 1.1. Let e_; denote the canonical generator of the
one-dimensional vector space D(Q,(1)), and define

1
H,(X) =logh.(X) — Elog RET (1 + X)P —1).
From the definition in [PR4] §1.2.5 (see also [PR3] §1.3 and §3.1.4), we see that
Lo, )+ (Cro) = Fre—

where F, € Q(p,)" ® A is such that for every k > 1,

<5>k(‘7:r) = (DkHr)(Cp -1)
where D is the derivation (1 + X)dix. Thus if x : Gal(Q(p,) " /Q) — E* then

GXL:Q(I_LT)+(6T,OO) = ane,l
where F,, € Q(i,)t ® A ® E is such that for every k > 1,

<5>k(-7:r,x) = Z X_l(’Y)(DkHZ)(Cp —1).
Y€Gal(Q(k,)t/Q)
Therefore by Lemma D.2.2,

- N —x(p)p* if (p—1) 1k
() (Fr) = 20 () (~2mi) H Lk k) x {1—pk1x<p> it (p— 1) | &

so by the formulas in [PRA4] §4.2 and §4.3.3 we see that for k > 1,

() (exLqu,)* (Eroc)) = (€)" (Frxe-1)
=2(e) *(LP(Z, ®© X)) = 2()" (L (Z, @ 1))

(the Gauss sums which appear in the formulas of [PR4] and [PR3] are not present
here because we never identified Q[Gal(Q(w,.)/Q)] with Q(u,.) as in [PR3] §1.8).
By (6) and (7), these equalities suffice to prove the proposition when r > 1. A
similar computation shows that for every o € Gq,

Ly (0 =1)&100) =2(0 — DL (Z,)". O

COROLLARY 4.2. Conjecture 2.6 holds for Z,(1) and every r prime to p.
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PRrROOF. We have assumed that p > 2. Therefore ufﬁ“ = {1}, and for every
a € Z,[[Gql], Proposition 4.1 shows that

¢ = acm e H,(Q(p,)",T)

satisfies Conjecture 2.6. O

5. Connection with Euler systems when d_ > 1

Suppose now that T is such that d_ is greater than 1, and suppose that some
version of the assertion 2.2 is true: i.e., suppose there is an integer N divisible by
all primes where T' is ramified, and an element a € Z,[[Gq]] such that for every
integer r prime to Np, there is an element

& =€ Ay HL(Qe)",T)
satisfying
L3 (€)= (LT @ x)",
for every character y of A,. We also suppose again that the weak Leopoldt con-

jecture holds for T*. In this section we will adapt an idea from [Ru8] §6 to
construct Euler systems (elements in H (Q(w,)%,T)) from the elements &, €

Ao HL(Q(p,) ", T).

LEMMA 5.1. With hypotheses and notation as above, suppose r is prime to Np
and £ is a prime not dividing Nrp. Then

©d-- =1, p—1
Corg . )y y+ &) — P(Er T Fry )(E)

belongs to the A-torsion submodule of /\i: HY(Q(p,) ", T), where P(Fr; M T*; ) =
det(1 — Fr, '2|T™*) € Zy[z] and

d_
Corg(uﬁﬁ/Q(ur)* : /\d7 H;O(Q(H’TZ)Jr’ T) - /\d7 H;O(Q(ll’r)Jr?T)

is the map induced by corestriction.
PRrROOF. Exactly as in the proof of Proposition 3.1, we deduce that
®d7 ®d— ®d— —1p, T—1
L (CO Q1 sqqu €r0)) = Lgga,y+ (PEITSF(E,)).
Also as in the proof of PI‘OpOSlthn 3.1, the kernel of Lg,, )+ is a torsion A-module,

and so the kernel of L is torsion as well. O

()"

Suppose ¢ € Hom,y, (Héo(Q(u,,)+,T),Ar). Then ¢ induces a A,-module ho-
momorphism from A HL (Q(p,)",T) to A 'HL (Q(p,)",T) for all k > 1 by
the usual formula

/\C}gHZ Z+1 CZ Cl/\ o NCi—1 N\ Cig1 N Cp.

Iterating this construction d, — 1 times gives a map

A%~ Homy, (HY(Q(p,) . T),A,)
— Hom(Ay HL (Q(p,) ", T), H (Q(p,) ", T)).
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If r | v/ then there is a natural map
Nr’/r : Hom/\,./ (H;O(Q(l’l'7/)+7 T)a AT’) - HOHlAT (Héo(Q(Hr)+a T)a A7)
induced by restriction H. (Q(u,)*,T) — H (Q(u,.)",T) and the identification
A, AGaQ) T /Qm,)T)
r’ .
PROPOSITION 5.2. With notation as above, suppose that TG =0 and
& = {&,} € lim A}~ Homa, (X (Q(g,) ", ), Ar).

Then &,.(€,) € HL(Q(p,)",T) for every r prime to N, and if £ is a prime not
dividing Nrp then
COTQ(,LW,[)+/Q(,LT)+(Gré(ﬁrz)) = P(Fr[1|T*; Fre_l)(er(ﬁr))'
In other words, if we write &,(€,) = {&n,r n then the collection
{&nr € H (Qu(p,)*,T)}
is an BEuler system for T (Definition 11.1.1 and Remark 11.1.3).

PROOF. The proof is identical to that of Proposition 6.2 and Corollary 6.3 of
[Ru8]. It is immediate from the definition that &,.(¢,) € HL (Q(u,.)", T) for every
r, and straightforward to check that

®d_
CorQ(MT')+/Q(I-LT)+ (67”/ (Sr’)) = 67‘ (COI'Q(MT/)Jr/Q(MT)Jr (5,’,)) .
Combined with Lemma 5.1 this shows that
COI‘Q(}LM)"'/Q(;LT)‘*' (67’5(67“6)) - P(FI'21|T*7 Frzl)gr(gr)'

belongs to the A-torsion submodule of H! (Q(g,.)", T). But by [PR4] Lemme 1.3.3
and (4) this torsion submodule is T, which we have assumed to be zero.  [J

REMARK 5.3. Of course, Proposition 5.2 is only useful if we know something
about the size of lim /\jl\:_l Homy (H (Q(w,)",T),A,), and in particular that it

is nonzero. See [Ru8] §6 for an example.



CHAPTER IX
Variants

In this chapter we discuss several alternatives and extensions to the definition
of Euler systems we gave in Chapter II.

1. Rigidity

It is tempting to remove from the definition of an Euler system the requirement
that the field IC (over whose subfields the Euler system classes are defined) contains
a Z, extension of K. After all, the proofs of the Theorems of Chapter II §2 only
use the derivative classes kg ¢ p and not the kg, s for larger extensions F' of K
in K. However, our proofs of the properties of the derivative classes kg ¢ s very
much used the fact that the Euler system class ck ;) is a “universal norms” in the
extension K (t)/K(t).

In fact, some such assumption is needed, as the following example shows. Sup-
pose K has class number one, N is an ideal of K divisible by p and all primes
where T' is ramified, and T has the property that P(F‘rq_1|T*; 1) = 0 for every q
not dividing /. (For example, if T" is the symmetric square of the Tate module of
an elliptic curve as in Chapter IIT §6 then T has this property.) Suppose further
that K is the maximal abelian extension of K unramified outside N (so K does
not contain a Z,-extension of K) and c is an Euler system for (7, XC, N'). Then in
Definition II.1.1, the only equations tying cx to the rest of the Euler system are of
the form

Corp/gecr = H P(Fr;1|T*;Fr;1)cK = H P(Fr;1|T*; ek
qEX(F/K) 9ER(F/K)

If F # K then the set 3(F/K) of primes ramifying in F//K is nonempty, so the
right-hand side will always be zero. In other words cx does not appear in any
nontrivial Euler system relations, so we can replace cx by any element at all in
HY(K,T) and we still have an Euler system! For example, the collection defined
by cg = 0 for F # K, with cx arbitrary, is an Euler system. Since there are
examples satisfying the conditions above with non-trivial Selmer groups, in this
situation one cannot have a theorem like Theorem II1.2.2 (or Theorem IV.5.4), in
which the conclusion depends in an essential way on cg.

However, there are other possible ways to ensure the “rigidity” of an Euler
system. In Definition II.1.1, we can replace condition (ii) by

(ii)" at least one of the conditions (a), (b), (c¢) below is satisfied:
(a) K contains a Zg—extension of K in which no finite prime splits com-
pletely,

133
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(b) for every t, cx(r) € S¥»(K(r),T); and there is a v € Gk such that
v=1o0n K(1)(pye, (OF)/P7) and v — 1 is injective on T,
(c) for every vt € R, Cx(r) € S*»(K(x), T); for every prime q not dividing
N, and every power n of p, Fr? —1 is injective on T'; and the collection
{ck ()} satisfies the congruence of Corollary IV.8.1.
Condition (ii)’(a) is condition (ii) of the original definition.

Under this more general definition, Theorems I1.2.2, 11.2.3, and 11.2.10 all hold,
with conclusions exactly as stated, under the additional mild assumption that
TGx1) = 0. We indicate very briefly how to adapt the proofs in Chapters IV
and V to cover this expanded definition.

The idea is that there is a power m of p, independent of M, such that one
can still construct the derivative classes ki s, and prove the local properties
of Chapter IV §5, under the assumption t € Rg arm rather than v € R pr. This
additional assumption does not interfere with the proofs of the theorems of Chapter
I1.

Construction of the derivative classes. Since we assumed T¢x() = 0, Lemma
IV.2.5(i) shows that T¢x® = 0 for every r. Thus if we replace Wy, by T =
Maps(Gk,T) in Proposition IV.4.5 we get a short exact sequence

Or(v)
e

0 — T%® — (T/T)%r® H'(F(x),T) — 0.

Now as in Proposition IV.4.8, but using this exact sequence above instead of Propo-
sition IV.4.7, we can find a map d : Xp() — (T/T)“7® lifting c. Projecting this
map to (Wys/War)¥F© we can proceed exactly as in Definition IV.4.10 to define
RFq M-

Analogue of Theorem IV.5.1. All we need is Corollary IV.6.5 in place of The-
orem [V.5.1. Corollary 1V.6.5 follows directly from Proposition IV.6.1, which is
included as part of (ii)’(b) and (ii)’(c). (In the text, under assumption (ii)’(a), we
used the Zg—extension K /K and Corollary B.3.4 to prove Proposition IV.6.1.)

Analogue of Theorem IV.5.4. Theorem IV.5.4 follows directly from Lemma
IV.7.3, so we must prove a form of that lemma. Suppose first that (ii)’(b) holds
with an element v € Gg. Fixtq € R, a power M of p, and a power M’ of p divisible
by MP(y|T;1). Let n = |, N K|. By definition of v, P(y|T;1) # 0. Choose a
prime [ of K such that

(a) Fro =7 on K(1)(puar (O5)Y M) W),

(b) Fry =1 on K(tq),

(¢) Fr; # 1 on K(AY(P)) where A\Ox = q" with h equal to the order of q in the
ideal class group of K.

(Exercise: show that these conditions can be satisfied simultaneously.) One can
imitate the proof of Lemma IV.7.3 by using the extensions K (I)/K in place of the
finite extensions of K in K. Condition (a) and the definition of v ensure that
nM’ | [K(l) : K]. Condition (c) ensures that the decomposition group of q has
index dividing n in Gal(K(l)/K), and therefore has order at least M'. The key
point is that although cg () and cg(rq) are not “universal norms” from K (tl) and
K(tql) (as they would be in K (tr) and K (tq)), the Euler system distribution



1. RIGIDITY 135

relation shows that P(Fr; !|T™; Fr[_l)cK(t) is a norm from K (¢l) and similarly with
t replaced by tq. Conditions (a) and (b) imply that in O[Gal(K (vq)/K)],

P(Fr ! T* Fr ) = P(Fr( T 1) = P(y7 YT 1) = P(7|T; 1) (mod M).

Now imitating the proof of Lemma IV.7.3 one can show that, with notation as in
the statement of that lemma, if vq € R p then

P(Y|T; 1)(Ngyd(2 5 (eq)) — P(Fry T Fry )yd(wpe)) = 0 € Wi

This suffices to prove that k¢ pr and kg cq, 1 satisfy the equality of Theorem IV.5.4.

Now suppose (ii)’'(c) holds. In Chapter IV §8 we used Lemma IV.7.3 to prove
the congruence of Corollary IV.8.1. Under the assumptions (ii)’(c) we can just
reverse the argument to prove Lemma 7.3, and then Theorem IV.5.4.

EXAMPLE 1.1 (cyclotomic units revisited). With this expanded definition, we
can redefine the cyclotomic unit Euler system of Chapter III §2.1. Namely, for
every m > 1 prime to p define

Em = (Cn — D" = 1) € Q) ) € HY Q1) ", Zp(1))

and set ¢; = 1. This collection is not an Euler system, since, for every prime
C#p, €qu,) & S™(Q(py), Zy(1)). However, suppose x : Gq — O is a nontrivial
character of finite order, and its conductor f is prime to p. Then we can twist
& by x~! as in Definition I11.4.1, and the collection ¢ = &X' 4s an Euler system
for (Z,(1) ® x~1, Q*"P, fp), where Q**? is the maximal abelian extension of Q
unramified outside p. Namely, although condition (ii)’(a) does not hold, (ii)’(b)
(with v € GQ(u, =), & kerx) and (ii)'(c) (see Example IV.8.2) both do hold. With
this Euler system we can remove one of the hypotheses from Theorem II1.2.3 and
Corollary IIT.2.4. Namely, with notation as in Chapter III §2 (so L is the field cut
out by ), we have the following theorem.

THEOREM 1.2. Suppose p > 2 and x is a nontrivial even character of conductor
prime to p. Then

[ ALl = (€7 : CLyl.

SKETCH OF PROOF. If x(p) # 1 this is Corollary I11.2.4. So we may assume
that the conductor of x is prime to p and use the Euler system constructed above.
For this Euler system, c; generates Cr, ,, so exactly as in the proof of Theorem
I11.2.3 we deduce from Theorem I1.2.2 that

S5, (Q. (Qp/Zp) @ x)| divides [EF : Cp,x].
However, while $(Q, (Q,/Z,) ® x) = Homp (A}, D) (Proposition 1.6.1),

S, (Q.(Qp/Zy) ® x) = Hom(A} /P, D)

where P is the subgroup of A} generated by the classes of primes of L above p.
To complete the proof, we observe that the derivative classes kg , ar attached
to our Euler system all lie in S (Q, y; ® x 1), not just in S¥»(Q, puy, @ x 1)
as Theorem IV.5.1 shows in the general case. (This follows from the fact that
cqu,) € S(Q(p,),Z,(1) ® x~ ') for every r. See for example [Ru3] Proposition
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2.4.) Therefore we can repeat the proof of Theorem I1.2.2, but using ¥y = () and
¥ =%, in Theorem 1.7.3 instead of g = {p} and ¥ = 3, to conclude that

AL =18(Q.(Qp/Zp) @ X)|  divides [E] : Cpy].

Now the equality of the theorem follows from the analytic class number formula
exactly as in Corollary I11.2.4. O

2. Finite primes splitting completely in K.,/K

Definition I1.1.1 of an Euler system requires a Zg—extension Ko /K, with K, C
IC, such that no finite prime splits completely in K, /K.

In fact, the assumption that no prime splits completely is unnecessarily strong.
We can remove this hypothesis if we assume instead that

(*) for every prime q of K which splits completely in K, /K, and for every finite
extension F of K in K, we have (cp)q € HY (Fy,T).

If g is a prime of K, our proofs used the fact that q does not split completely in
Ky/K

(i) for every q, to show that (cp)q € Hy,(Fy,T) for every F (see Proposition

IV.6.1 and Corollary B.3.4);

(ii) for primes q € R, at various places.
This condition (*) takes care of (i), and for (ii) we only need observe that the set
of primes splitting completely in K., /K has density zero, so we can remove from
R all ideals divisible by those primes without interfering with our Tchebotarev
arguments.

3. Euler systems of finite depth

DEFINITION 3.1. Fix a nonzero M € O. An Euler system for Wy (or an
Euler system of depth M) is a collection of cohomology classes satisfying all the
properties of Definition II1.1.1 except that instead of cp € H!(F,T) we require
cr € HY (F,Wy). Thus an Euler system in the sense of Definition II.1.1 can be
viewed as an Euler system of infinite depth, which gives rise to an Euler system for
Wy for every M.

REMARK 3.2. For this definition we could replace Wy, by a free O /M O-module
of finite rank with an action of Gg; it is not necessary that it can be written as
T/MT for some T.

The construction of the derivative classes kg« 3 in Chapter IV §4 only used
the images of the classes cp(s) (for s dividing v) in H'(F(t), Was). Thus if ¢ is
an Euler system for W, then we can define the classes K ar in exactly the same
way.

The proof of Theorem IV.5.4 also only used the images of the Euler system
classes in H'(-,Wyy), so that theorem still holds for the derivative classes of an
Euler system for Wj,. However, the proof of Theorem IV.5.1 used the images of
the Euler system classes in H*(-, W) for every M’, so that proof breaks down
in this setting. However, as discussed in §1 above (and see Remark IV.6.4), we
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can still prove a weaker version of Theorem IV.5.1, and this will suffice for some
applications.

For example, the proofs in Chapters IV and V will prove the following Theorem.
Keep the setting and notation of Chapter II (so in particular, for simplicity, Wy; =
T/MT).

THEOREM 3.3. Suppose M € O is nonzero and ¢ is an Euler system for Wyy.
Suppose that Hypotheses Hyp(K,T) hold, that the error terms ny and njy, of The-
orem 11.2.2 are both zero, and that WAC/’}K =0. Let

m= sup (W - (W) qi].

primes q of K
atp

and let n be the order of mex in H'(K,Wy). Then nSs, (K,Wj;) = 0. In
particular if mcg # 0 then Sy, (K, W*) is finite.

REMARK 3.4. The integer m of Theorem 3.3 is finite, since [WZ : (W7)q;,] is
finite for all q, and equal to one if 7" is unramified at q. See the proof of Corollary
IV.6.5.

One could reformulate Theorem 3.3 for a general G g-module W which is free
of finite rank over O/M O, i.e., one which does not come from a “T"”, but one would
have to redefine the Selmer group since our definition depends on 7', not just on
Whr.

4. Anticyclotomic Euler systems

The “Euler system of Heegner points”, one of Kolyvagin’s original Euler sys-
tems, is not an Euler system under our Definition II.1.1. If one tries to make the
definition fit with K = Q, the problem is that the cohomology classes (Heegner
points) are not defined over abelian extensions of Q, but rather over abelian ex-
tensions of an imaginary quadratic field which are not abelian (“anticyclotomic”)
over Q. On the other hand, if one tries to make the definition fit by taking K to
be an appropriate imaginary quadratic field, then the problem is that the Heegner
points are not defined over large enough abelian extensions of K, but only over
those which are anticyclotomic over Q.

We will not discuss Heegner points in any detail (see instead [Ko2], [Ru2], or
[Gro2]), but in this section we propose an expanded definition of Euler systems
that will include “anticyclotomic” Euler systems like Heegner points as examples.

Fix a number field K and a p-adic representation 7" of G as in Chapter II §1.
Suppose d is a positive integer dividing p — 1, and x : Gk — Z, is a character of
order d. Let K’ = K**(X) be the cyclic extension of degree d of K cut out by x.

For every prime q of K not dividing p let K'(q), denote the maximal p-extension
of K’ inside the ray class field of K’ modulo q, such that Gal(K'/K) acts on
Gal(K'(q)y/K') via the character x. Similarly, let K’(1), denote the x-part of
maximal unramified p-extension of K’.

Now suppose K’ is an (infinite) abelian p-extension of K’ and A is an ideal of
K divisible by p, the conductor of y, and by all primes where T is ramified, such
that X' contains K'(q), for every prime q of K not dividing N.
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DEFINITION 4.1. A collection of cohomology classes
c={cre H(F,T): K'c,F Cc K}
is a x-anticyclotomic Euler system for (T,K', N') (or simply for T') if
(i) whenever K'C, FC, F' C K,

Corpr/p(cpr) = ( H P(Fr;1|T*;Fr;1)>CF
qex(F'/F)
where X(F’/F) is the set of primes of K not dividing A/ which ramify in F’
but not in F', Fry is a Frobenius of q in Gk, and

P(Fr;1|T*; x) = det(1 — Fr;1x|T*) € Olz],

(ii) at least one of the following analogues of the hypotheses (i)’ of §1 holds:

(a) K’ contains a Zg-extension K/, of K’ in which no finite prime splits
completely, and such that Gal(K'/K) acts on Gal(K/ /K') via x, or

b) for every t, cxi(). € S¥#(K'(t)y,T), and there is a v € G such

( )x X

that ecye(y) = x(7), ¥¢ is the identity on K'(1)y(pyee, (Of)H/P7),
and y — 1 is injective on 7', or

(c) for every v € R, cxp) € S¥r (K (v),T); for every q not dividing N,
and every power n of p, Frg — 1 is injective on T'; and the classes
{cr} satisfy the appropriate analogue of the congruence of Corollary
IV.8.1.

REMARK 4.2. If d = 1, then yx is trivial, K’ = K, and so a y-anticyclotomic
Euler system for T is the same as an Euler system for T in the sense of Definition
IT.1.1 (or §1).

If K =Q, d=2 and x is an odd quadratic character, then K’ is an imaginary
quadratic field and K’ is an anticyclotomic p-extension of K’. If T is the Tate
module of a modular elliptic curve, and we make the additional assumption that
x(q) = 1 for every ¢ dividing the conductor of x, then the Heegner points in anticy-
clotomic extensions of K’ give a x-anticyclotomic Euler system for 7. (One must
modify the Heegner points slightly, as in §6 below, to get the correct distribution
relation.) Note that in this situation we can take K’ to contain the anticyclotomic
Z,-extension K/  of K’, but all rational primes which are inert in K’ split com-
pletely in K/_/K’ so condition (ii)(a) of the definition fails. However, both (ii)(b)
and (ii)(c) hold.

Given a x-anticyclotomic Euler system and a power M of p, one can proceed
exactly as in Chapter IV §4 to define derivative classes

ke € HY (K, W)
for every v € R ar, where Ry s is the set of squarefree ideals of K divisible only
by primes q such that qt N, M | [K'(q)y : K'(1)], and M | P(Fr;1|T*; 1). These
classes satisfy analogues of Theorems I'V.5.1 and IV.5.4, and can be used along with

global duality (Theorem 1.7.3) to bound the appropriate Selmer group.
For example, one can prove the following theorem. Let

Q/ = K/(]')X(u’poca (OIX(’)l/pQva)a
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and for every i let
indo(c, x') = sup{n : ¢, € p"H' (K',T) + H'(K’', T)tors} < 00,

where c}‘;, denotes the projection of cx- into the subgroup H*(K’, T)X' of H*(K',T)
on which Gal(K'/K) acts via x'.

THEOREM 4.3. Suppose c is a x-anticyclotomic Euler system for T. Suppose
further that H(QY'/K',W) = HY{(QV'/K',W*) =0, T ® k is an irreducible k[G ]-
module, and there is a T € Gk such that

® coye(T) = X(7),
o 7% s the identity on K'(1) (1o (O™, and
o T/(t — 1)T is free of rank one over O.

Then for every t,
prle XSy (KW =o.

REMARK 4.4. The main difference between the case of trivial y (i.e., Theorem
I1.2.2) and nontrivial y is reflected in the way the powers of x appear in the state-
ment of Theorem 4.3. This is caused by the analogue of Theorem IV.5.4, which
states that for vq € Rg ar, loc‘; (KK’ cqM) = ¢£S(/<;K/7t7M) where

As usual we write H (K, War) = ©y|q H (K}, War) and similarly for H{ (K3, W),
so that both are Gal(K’/K)-modules. But ¢3° is not Gal(K’/K)-equivariant; for
q € Rk’ v, one can show that

OIS (HHKL, War)X') € HE(KL, Wan)X .
Thus, taking v = 1 and letting q vary, we obtain many classes in H(K”, WM)Xi_l,
ramified at only one prime of K not dividing p, whose ramification is expressed in
terms of c);;,, and these classes can be used to annihilate classes in Sy, (K’, WX
This is how Theorem 4.3 is proved.

To prove an analogue of Theorem I1.2.2 and bound the order of the various
components of Sy, (K', W*), we would need to proceed by induction as in Chapter
V. Unfortunately this is not at all straightforward, because at each step of the
induction we move to a different component. We will not attempt to formulate,
much less prove, such a statement here.

In the case of the Euler system of Heegner points, the induction succeeds using
the fact that T* =2 T. When d > 2 there is no obvious property to take the place
of this self-duality. Also, when d = 2, x takes values +1, so if L is any abelian
extension of K’ it makes sense to ask if Gal(K'/K) acts on Gal(L/K’) via x.
When d > 2, this only makes sense when L/K' is a p-extension. This is sufficient
to discuss and work with Euler systems, but it raises the question of whether one
should expect x-anticyclotomic Euler systems with d > 2 to exist.
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5. Adding additional local conditions

Inspired by work on Stark’s conjectures (see for example [Grol] or [Ru6]) it
may be useful to impose local conditions on Euler system cohomology classes.

Suppose X and X/ are disjoint finite sets of places of K. If A is T, W, Wy,
T*, W or Wj;, define

SE (K, A) = ker (S¥(K,A) = Gyesy H' (K, A))

and similarly with K replaced by a finite extension. For example, S (K, T) consists
of all classes ¢ € H'(K,T) satisfying the local conditions

o co € H(K,,W)ifvg DU,

e c,=0ifved,

e 10 restriction for v € X.

DEFINITION 5.1. Suppose c is an Euler system for (T, X, N), and ¥ is a finite
set of primes of K not dividing p. We say c is trivial at ¥ if cp € SS” (F,T) for
every F.

If an Euler system is trivial at %, we can use it to bound the Selmer group
Sgp (K,W*). The proof will be the same as the original case where ¥ is empty,
once we have the following strengthening of Theorem IV.5.1.

THEOREM 5.2. Let X be a finite set of primes of K not dividing p. If c is an
Euler system for T, trivial at X, then the derivative classes kg a constructed in
Chapter IV §4 satisfy

KFe,M € Sgpr (F, WM)

PRrROOF. By Theorem IV.5.1, we only need to show that (kg,ar)q = 0if g € 2.
The proof is similar to that of Theorem IV.5.1 in Chapter IV §6. We use the
notation of that proof.

Fix a lift d : Xp) — Wy /Wiy of ¢ as in Proposition 1V.4.8 and write dg for
the image of d in Hom (X p(y), W s /IndZ¥ (W) in the diagram of Lemma IV.6.7.
Then dq is a lift of ¢ in the sense of Proposition IV.6.8, but so is the zero map,
since (Cp(r))q = 0. Therefore the uniqueness portion of Proposition IV.6.8 shows
that

d, € image(Hom(XF(r),W]GwF(‘)))

and from this it follows without difficulty, as in the proof of Theorem IV.5.1, that
(HF,r,M)q =0. O

The following analogue of Theorem I1.2.2 (using the same notation) is an ex-
ample of the kind of bound that comes from using an Euler system which is trivial
at .

THEOREM 5.3. Suppose that p > 2 and that T satisfies Hyp(K,T). Let X be a
finite set of primes of K not dividing p. If ¢ is an Euler system for T, trivial at 3,
then

lo(S5, (K, W*)) < indo(c) + nw + njy
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where
nw = Lo(HY(Q/K, W) NSar (K, W))
njy = Lo(H' (Q/K,W*) NS, (K, W*))

PROOF. The proof is identical to that of Theorem I1.2.2, using Theorem 5.2
instead of Theorem IV.5.1. O

REMARKS 5.4. There are similar analogues of the other theorems of Chapter
IT, bounding S%p (K,W*) and S%p (Koo, WH).

By taking 3 to be large, we can ensure that the error term nyy in Theorem 5.3
is small.

In the spirit of Chapter VIII, if we think of Euler systems as corresponding to
p-adic L-functions, then an Euler system which is trivial at 3 corresponds to a p-
adic L-function with modified Euler factors at primes in ¥. As in [Grol] §1 (where
our Y is denoted T'), these Euler factors can be used to remove denominators from
the original p-adic L-function (see Remark VIII.2.5 and Conjecture VIII.2.6).

6. Varying the Euler factors

It may happen that one has a collection of cohomology classes satisfying distri-
bution relations different from the ones in Definition 1.1. Under certain conditions
one can modify the given classes to obtain an Euler system.

Return again to the setting of Chapter II §1: fix a number field K and a p-adic
representation T of Gk . Suppose K is an abelian extension of K and N is an ideal
of K divisible by p and all primes where T is ramified. If KC,F C, F' C K, let
Y(F'/F) denote the set of primes of K not dividing N which ramify in F’/K but
not in F/K.

LEMMA 6.1. Suppose {fq € Olz] : q 1 N} and {gq € Olz] : q 1 N'} are two
collections of polynomials such that fq(x) = gq(z) (mod N(q) —1) for every q, and
{¢r € HY(F,T) : KC,F C K} is a collection of cohomology classes such that if
KC, FC, F' CK, then

Corprjp(€pr) = ( H fq(Fr;1)>éF~
qEX(F'/F)
Then there is a collection of classes {cp € HY(F,T): K C;F C K} such that
(i) for all F and F' as above,
COI'FI/F(CF/) = ( H gq(Fr(;l))CF,
qEX(F'/F)
(i) for every finite abelian extension F of K unramified outside N,
CF =Cr,
(iii) if F is a finite abelian extension of K, x is a character of Gal(F/K) of
conductor f, and every prime which ramifies in F/K diwvides N, then

Z x()yer = Z X(Y)CF.

~EGal(F/K) ~EGal(F/K)
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Proor. If KC, F C K let X(F) = L(F/K), and if S is a finite set of primes
of K let Fs be the largest extension of K in F' which is unramified outside S and
N If qf N et dg = gqg(Fry ') — fo(Fr; ). For every F define

cr= Y W( [T nmE)er.
SCX(F) [ ) S} qES—%(Fs)
(Let Z4(F/K) denote the inertia group of q in Gal(F/K). Then Gal(F/Fs) is
generated by {Z; : q € X(F) — S}, and |Z,] divides (N(q) — 1) in O, so [F' : Fgs]
divides [ cs(p)-s(N(q) —1). Since dq € (N(q) — 1)O[Gal(F/K)], the fractions
above belong to O[Gal(F/K)].)

With this definition, (ii) is clear. Assertion (iii) (of which (ii) is a special case)
also holds, because if S is a proper subset of X(F') then our assumption on the
conductor of x implies that > .1/ X(V)V€Fs = 0.

For (i), observe that for every S, Fg¢ N F' = Fg. Thus, using the diagram

\
FLF
Fg F

N

Fg

we see that
COTF’/F(éFé) = CorFéF/FCOTF’/FéF(éFé) = [F/ : FéF]COI"FéF/F(éFé)
[F': F) [F': F)

= 7COFF//F (ép/) = f (Ii_l) éF
F/ - F s F/ A | I q q S
[ S s] ’ ’ [ S s] qEX(Fg/Fs) )

and so Corp//p(cpr) = ESCE(F,) asCr, where

:M( 11 fq(Frq_l))[[F/ﬂ( 1T fq(Frq_l))

T 7 /.
[F": F] 4ES—S(Ff) Fs : Fs] 1€X(Fg/Fs)
gen -5 da -
=i (I A,
s qES—T(Fs)

Since Fs = Fsny(r), we can group together those sets S which have the same in-
tersection with ('), and we get a new expression Corpr/r(Cp) = > g5 () bsCrs
where

N o d
bs = Z quE[;f Z)FZ] = ( H fq(Fle))

S'CS(F'/F) qESUS’' —5(Fs)
HqEE(F)—S dq -1
~irm (L am)

q€S—X(Fs)

< > (I ) (I faeh).

S'CS(F'/F) qes(F'|F)—S8' qes’
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Since
S (I d)(ITamE) = TI @+ o)
S'CE(F'/F) qes(F'/F)—8' qes’ GES(F'/F)
= H gq(Frq_l)a
AEX(F'/F)
we conclude that Corpr/p(cr) = [Iiesr/r) 9 (Frgl)cF as desired. O

EXAMPLE 6.2. Suppose K = Q, fy,(z) =1 —z and g,(z) = 1 — ¢ 'z. Then
fq(z) = gg(z) (mod (¢—1)Z,) for every q # p. By applying Lemma 6.1 with these
data to the collection {¢» € H'(F,Z,)} constructed in Chapter III §4.1, we obtain
an Euler system for Z,(1).

LEMMA 6.3. Suppose { f4(z) € Olz,z7'] : qt N'} is a collection of polynomials,
{uq € 0% : qt N} a collection of units, d € Z, and {¢p € H'(F,T): KC,F C K}
is a collection of cohomology classes such that if K C, FC, F' C K then

Corpyp@r) =TI falFry))er.
qEX(F'/F)
For each q define
9al(@) = uqz"fo(a™) € Ofa,a~].
Then there is a collection of classes
{cp e HY(F,T): KC,F C K}
such that
(i) for all F and F' as above,
Corpyp(er) = ([T oa(P3"))er,
qET(F/F)

(ii) for every finite extension F' of K unramified outside N,

Crp = Cp.
PROOF. For every F define
cp = ( H uqFrq_d)éF
a€X(F/K)

where we fix some Frobenius Fr, € Gal(K*"/K) (previously we always had Fr,
acting through an extension unramified at q). Then it is easy to check that this
collection has the desired properties. O

Let P(Fr;1|T; x) = det(1 — Fr;lx\T).

COROLLARY 6.4. Suppose {¢r € HY(F,T) : KC,F C K} is a collection of
cohomology classes such that if K C,FC, F' C K, then

corF,/F(eF,):( 11 P(Frq—1|T;Frq))éF.
4ES(F'/F)
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Then there is an Euler system {cp} for (T,KC,N) such that for every finite extension
F of K unramified outside N,
Cp = éF.

PRrOOF. This will follow directly from the previous two lemmas. For every g
we have

P(Fr;1|T; r 1) = det(1 — Frqflx*1|T) = det(1 — N(q) " 'Frqz!T%)
= (—N(q)) " det(Fry|T*)z~* det(1 — N(q)Fr;1x|T*)
where d = rankpT'. Thus if we first apply Lemma 6.3 with
fa= P Tia), g = (~N(@))" det(Frg|77) ",
and then apply Lemma 6.1 with
fo= P(Frq_1|T*;N(q)x), 99 = P(Frq_1|T*§$)7

we obtain the desired Euler system. O



APPENDIX A
Linear algebra

Suppose for this appendix that O is a discrete valuation ring. Let £ (B) denote
the length of an O-module B.

1. Herbrand quotients
Suppose a, 8 € O[z].
DEFINITION 1.1. If S is an O[z]-module and a3S = 0, then
aS c SP=Y BS c §*=°,
and we define the (additive) Herbrand quotient
h(S) = Lo (S~ /aS) — Lo(S*7"/BS)
if both lengths are finite.

ExaMPLE 1.2. If § = O[z]/aB0]x] then SP=0 = aS = aO[z]/aBO[z] and
§e=0 — 85 = BO[z]/aBO], s0 h(S) = 0.

PROPOSITION 1.3. (i) If S is an Olz]/aBO|x]-module and o (S) is finite,
then h(S) = 0.
(ii) If0 - 8" — S — S — 0 is an ezxact sequence of Olz]/aBOx]-modules
and two of the three Herbrand quotients exist, then the third exists and

h(S) = h(S') + h(S").

ProoOF. This is a standard fact about Herbrand quotients, see for example
[Se3] §VIIL4. f a« = (z™ —1)/(x — 1), B=x — 1 and G is a cyclic group of order
n with a generator which acts on S as multiplication by x, then

H°(G,8)=5%"/aS and HY(G,S)=5""/35.

For completeness we sketch a proof in our more general setting.
Assertion (i) follows from the exact sequences

0— 850 85 % as—0,
0 — $P=0/as — Sjas £ §2=0 — 52=9/35 .
For (ii), multiplication by 3 induces a snake lemma exact sequence
0— P gP=0 __, g"P=0 Y, §'/85" . /B85 — 5" /BS" — 0.

145
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This gives rise to a commutative diagram
0 —— coker(yp)) —— S/BS —— S§"/BS" —— 0

g g |
0 —— SP0 — §8=0 . ker(y)) — 0.

Applying the snake lemma again gives an exact sequence

0— A— 50/85 — §"°/B5"
— 570 — 8P jaS — B — 0
where
0— B— 8"%as" L, ¢*70/38" — A — 0.
Assertion (ii) follows from these two exact sequences. O

LEMMA 1.4. Suppose a3 = Hle p; with p; € Olx], and suppose further that
p, is relatively prime to B for every i > 1. Let S = ®;0]z]/p;O[z]. Then h(S) = 0.

ProoF. For each i let S; = O[z]/p;Olx]. If i > 1 then, since p, is relatively
prime to B (and therefore must divide a), we see easily that SZ@ =0 = a$; =0 and

S§2=0 = G,. Thus
h(Si) = —Lo(S:/BS:) = —Lo(O[x]/(B, p;))

which is finite. By Proposition 1.3 and Example 1.2 we conclude that the Herbrand
quotient h(S:) exists as well, and that h(S) = >, h(S;) = h(O[z]/p(x)) =0. O

2. p-adic representations

Let T be a free O-module of finite rank, and let o be an O-linear automorphism
of T. Let p(x) = det(1 — o~12|T) € Olx], and suppose further that p(1) = 0 (i.e.,
det(1 — o|T) = 0). Then there is a unique polynomial ¢(z) € O[z] such that
p(z) = (1 - z)q().

The Cayley-Hamilton theorem shows that p(c) = 0, so T is an O[x]/p(x)-module,
with z acting via o. Thus we are in the setting of §1, with & = g(x) and 8 = = — 1.
Let @ denote the field of fractions of O and V =T ® ®.

LEMMA 2.1. Suppose T is a direct sum of cyclic Olo]-modules, and suppose
further that dime(V/(0 — 1)V) = 1. Then the Herbrand quotient h(T) = 0.

PROOF. Since OJo] is a quotient of Olz], as an O[z]-module we can identify
T = @:0[x]/ fi(2)Ola]

where p(z) = [, fi(x). The assumption that dime(V/(c —1)V) = 1 implies that
exactly one of the f;(x) (say, f1) is divisible by  — 1. Thus we can apply Lemma
1.4 to conclude that h(T) = 0. O

LEMMA 2.2. There is an O[o]-submodule S of T such that S is a direct sum of
cyclic Olo]-modules and £o(T/S) is finite.
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PROOF. Since the polynomial ring ®[z] is a principal ideal domain, V is a
direct sum of cyclic ®[g]-modules, and the lemma follows easily. O

PrOPOSITION 2.3. Ifdimg(V/(c — 1)V) =1 then h(T) = 0.
ProoF. This is immediate from Proposition 1.3 and Lemmas 2.1 and 2.2. O

LEMMA 2.4. Suppose dimg(V/(c —1)V) = 1. Then
(i) VaI=0 = (¢ — 1)V and V=" = q(0)V,
(ii) the map V/(ec — 1)V 29, yo=1 is an isomorphism.

PROOF. Viewing V as a ®[z]-module with x acting via o, there is an isomor-
phism

v = ot/ o]
where the f; € ®[x] are irreducible, JZZ(O) =1, and
Hfi(x)ei =p(r) = (1 - 2)q().
Since dimg (V/(o — 1)V) = 1, precisely one of the f; is 1 —z. Both assertions follow

easily from this. O

PROPOSITION 2.5. Suppose dimg(V/(0c —1)V) =1, and let W = V/T. Then
the lengths of the following O-modules are finite and equal.

(i) T77'/q(o)T (iv) Wo=/q(o)W
(i) TU)=0/(c —1)T (v) WHI=0/(g — )W
(iil) (T/(c — 1)T)sors (vi) Wo=Y/wes!

where WSt denotes the mazimal divisible O-submodule of Wo=1.

PROOF. Proposition 2.3 says that h(T) = 0, so (i) and (ii) have the same
(finite) length. Similarly Lemma 2.4(i) shows that h(V) = 0, so by Proposition
1.3(ii) (W) = 0 as well. Thus (iv) and (v) have the same length.

By Lemma 2.4(i), V4(9)=0/(¢c — 1)V = 0. Therefore T%*)=9/(¢ — 1)T is a
torsion O-module, and since T/T9(?)=0 is torsion-free we have

(T/(0 = DT )ors = T4 /(0 = )T
and so (ii) and (iii) are isomorphic. It follows similarly from Lemma 2.4(i) that
q(o)W = WSt and (iv) is isomorphic to (vi).
It remains to compare (i) with (v). Consider the diagram
T/(o—1)T —— V/(ec—-1)V —— W/(o—-1)W — 0

Q(U)l Q(U)l Q(U)l
TO':1 Vo:l

0 —— — — WL

By Lemma 2.4(ii), the center vertical map is an isomorphism, so the snake lemma
gives (i) 2 (v). O

For the next two corollaries let W = V/T, and if M € O let W), denote the
kernel of multiplication by M on W.
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COROLLARY 2.6. Suppose dimg(V/(0 —1)V) = 1, and let b denote the com-
mon length of the modules in Proposition 2.5. Then the kernel and cokernel of the
map

WM/(O' - 1)W]V[ ﬂ) W;C[:l
have length at most 2b.

PRrROOF. Consider the diagram

W/(o— 1w L7, o=t
[}

| I o

War /(o — DWy —27 we=1

M

The kernel and cokernel of ¢ are (v) and (iv) of Proposition 2.5, respectively, and
therefore both have length . Multiplying the exact sequence
00— Wy — W M, W —20
by o — 1 yields a snake lemma exact sequence
wo=t M, W=t Wy /(o — DWWy — W/ (o — D)W,

Therefore the kernel of the left-hand vertical map of (1) is W= /M (W°=1), which
is a quotient of the module (vi) of Proposition 2.5, and hence has length at most
b. Thus we conclude that o (ker(¢nr)) < 2b. The exact sequence

0— W — Wy 25 Wiy — Wi /(o — )Wy — 0
shows that Lo (W /(o — 1)Wy) = éo(Wf\}zl), SO
Lo(coker(ppr)) = Lo (ker(par)) < 2b

as well. 0

COROLLARY 2.7. Suppose 7 is an O-linear automorphism of Wy such that
Wi /(1 — D)Wy is free of rank one over O/MQO, and Q(x) € (O/MO)|x] is such
that (1 — 2)Q(z) = det(1 — 77 12|Wys). Then the map

oo
War/(r — )Wy 22 it
is an isomorphism.

PrOOF. We will show that there is an automorphism ¢ of T such that

(i) o induces T on Wy,
(ii) T/(oc — 1)T is free of rank one over O.

Once we have done this, we can apply the results of this section with this choice
of 0. Condition (ii) shows that the module of Proposition 2.5(iii) is zero, so the
integer b of Corollary 2.6 is zero. It follows from condition (i) that ¢(o) reduces to
Q(7) on Wyy, so this corollary follows from Corollary 2.6.

It remains to find such a o. Since Wy, /(m — 1)W)y is free of rank one over
O/MO, it follows that W71 is free of rank one over O/M O as well. Therefore we
can choose a basis {w1,...,wq} of Wy, such that Tw; = wq, where d = rankpT.
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For each i fix ¢; € T which reduces to w;. By Nakayama’s Lemma {t1,ts,... ,tq}
is an O-basis of T, and we define ¢ on this basis by lifting the action of 7 on the
w;, and requiring that o(t1) = t;. Then (i) is satisfied, rankoT/(c — 1)T > 1, and
since (T/(c —1)T) ® (O/MQO) = Wy /(t —1)Wy is a cyclic O-module, we can
apply Nakayama’s Lemma again to deduce (ii). O
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APPENDIX B
Continuous cohomology and inverse limits

NotaTION. If G and T are topological groups then Hom(G,T) will always
denote the group of continuous homomorphisms from G to T. We denote by
Maps(G,T) the topological group of continuous functions (not necessarily homo-
morphisms) from G to T, with the compact-open topology.

1. Preliminaries

Since we will use it repeatedly, we record without proof the following well-known
algebraic result.

ProposITION 1.1. (i) Suppose {An}, {Bn}, and {C,} are inverse systems
of topological groups and there are exact sequences
0—A, —B,—C,—0

for every n, compatible with the maps of the inverse systems. If the A, are
compact, then the induced sequence

0 —limA, —limB, — limC, — 0

n n n
1s exact.

(i) If O is a discrete valuation ring with fraction field ® and {A,} is an inverse
system of finite O-modules, then the canonical map

lim Hom(A,,, ®/0) — Hom(lim A,,, ®/0)
s an isomorphism.

2. Continuous cohomology

For this section suppose G is a profinite group and 7' is a topological G-module,
i.e., an abelian topological group with a continuous action of G.

DEFINITION 2.1. Following Tate [T4], we define the continuous cohomology
groups H'(G,T) as follows. Let C*(G,T) = Maps(G*,T). For every i > 0 there is
a coboundary map d; : C*(G,T) — C*TY(G,T) defined in the usual way (see for
example [Se3] §VIL.3), and we set

HY(G,T) = ker(d;)/image(d;_1 ).

If0o—-T — T —T" — 0is an exact sequence and if there is a continuous
section (again a set map, not necessarily a homomorphism) from 7" — T, then

0— CY(G,T") — CYG,T) — CYG,T") — 0

151
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is exact for every i and there is a long exact sequence
-— H'(G,T") — H'(G,T) — H'(G,T") — H"™ (G, T") — - --

REMARK 2.2. Note that if T is topologically discrete, as is assumed in the
more “classical” formulations of profinite group cohomology, then there is always a
continuous section 7" — T'. This is the case whenever T" is open in T'. Also, when
T is a finitely generated Z,-module, or a finite-dimensional Q,-vector space, with
the usual topology, there is a continuous section. These are the only situations in
which we will use these cohomology groups.

For the situations of interest to us, the following propositions will allow us to
work with the cohomology groups H!(G,T) exactly as if T were discrete. The first
two are due to Tate [T4]; see also Jannsen [J].

ProprosITION 2.3 ([T4] Corollary 2.2, [J] §2). Suppose i > 0 and T' = limT),
where each T, is a finite (discrete) G-module. If H'=Y(G,T,,) is finite for every n
then

H'(G,T) =lm H"(G,T,).

PROPOSITION 2.4 ([T4] Proposition 2.3). If T is a finitely-generated Z,-mod-
ule, then for everyi >0, H'(G,T) has no divisible elements and the natural map

HY(G,T)®Q, — H (G, T®Q,)
is an isomorphism.

ProprosITION 2.5. Suppose H is a closed, normal subgroup of G.

(i) There is an inflation-restriction exact sequence
0 — HYG/H,T") — HY(G,T) — H'(H,T).

(ii) Suppose further that p is a prime, and for every G-module (resp. H-module)
S of finite, p-power order, H*(G,S) and H*(G, S) (resp. H'(H, S)) is finite.
If T is discrete, or T is a finitely generated Z,-module, or T is a finite
dimensional Qp,-vector space, then there is a Hochschild-Serre exact sequence
extending the sequence of (1)

0— HY(G/H,T") — HYG,T) — H'(H,T)°/" — H*(G/H,T") — H*(G,T).

PrOOF. If T is discrete both assertions are standard. The proof of (i) in general
is identical to proof in this classical case.

Suppose T is finitely generated over Z,. Then for every n > 0, T/p"T is
discrete so there is a Hochschild-Serre exact sequence for T'/p™T. Our hypotheses
ensure that all the terms in this sequence are finite, and so taking the inverse limit
over n and applying Proposition 2.3 gives the exact sequence of (ii) for T.

If T'is a finite dimensional Q,,-vector space, choose a G-stable Z-lattice To, C 7.
Then as above we have a Hochschild-Serre exact sequence for Tj, and tensoring with
Q,, and using Proposition 2.4 gives the desired exact sequence for T'. O
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REMARK 2.6. To apply Proposition 2.5(ii) we need to know when a group
G has the property that H'(G,S) is finite for every i and every G-module S of
finite p-power order. For example, this is true whenever the pro-p-part of G is
(topologically) finitely generated.

We also have the following well-known result. In the important case i = 1 it
follows easily from class field theory (see for example [Se2] Propositions II.14 and
IT1.8). We say a Z,-module is co-finitely generated if its Pontryagin dual is finitely
generated.

PROPOSITION 2.7. Suppose either

(i) K is a global field, Kg is a (possibly infinite) Galois extension of K unram-
ified outside a finite set of places of K, and G = Gal(Kg/K),
(ii) K s a local field and G = G, or
(iii) K i4s a local field of residue characteristic different from p and G is the
inertia group in Gg.
If T is a G-module which is finite (resp. finitely generated over Zy, resp. co-finitely
generated over Z,) and i > 0, then H'(G,T) is finite (resp. finitely generated over
Z,, resp. co-finitely generated over Z,).

LEMMA 2.8. Suppose G = Z, the profinite completion of Z, and 7y is a topo-
logical generator of G. Suppose T is a Z,|G k]| module which is either a finitely
generated Z,-module, or a finite dimensional Qp-vector space, or a discrete torsion
Z,-module. Then

HYG,T)=T/(y—-1)T

with an isomorphism induced by evaluating cocycles at .

PROOF. It is easy to see that evaluating cocycles at + induces a well-defined,
injective map

HY(G,T) — T/(y - 1)T. (1)

It remains only to show that this map is surjective.

Using direct limits, inverse limits (Proposition 2.3), and/or tensoring with Q,,
(Proposition 2.4), we can reduce this lemma to the case where T is finite. When T
is finite, the Lemma is well-known, see for example [Se3] §XIII.1. O

3. Inverse limits

For this section suppose that K is a field, p is a rational prime, and T is a
Z,[Gk]-module which is finitely generated over Z,.

We will write K C; F' to indicate that F' is a finite extension of K. If K, is
an infinite extension of K and {Cr : K C; F C K} is an inverse system of abelian
groups, we will write {cr} for a typical element of lim Cr with cr € Cp.

LEMMA 3.1. If KC,FAC Fo Gy -+ - and UYL, F,, = K, then
lim H'(F,T) =lim H(F,,T/p"T).

K C¢ FCKoo
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PRrROOF. By Proposition 2.3 we see
lim H'(F,T)=1lim H'(F,,T) = limlim H'(F,,, T/p™T)

KCf FCKxo m

=lim H'(F,,T/p"T). O

LEMMA 3.2. Suppose K, is an infinite p-extension of K. Then

lim T¢" =0.

K Cf FCKoo
where the maps in the inverse system are given by the norm maps
Npgijp: TCr — TCF
fKCFCGF C K.
PROOF. Define a submodule Ty of T' by
Tp = UKCfFCKOOTGF~

Then Tj is finitely generated over Z, since T is, so we must have Ty = TCr for
some finite extension Fy of K in K. Therefore

lim 79 = lim 79 = lim Ty
K Cy FCKoo Fo Cy FCKoo Fo Cy FCKoo

where the norm maps Nz, in the right-hand inverse system are multiplication by
[F' : F]. Since Ty is finitely generated over Z,, and for every F, [F” : F] is divisible
by arbitrarily large powers of p as F’ varies, this inverse limit is zero. O

If K is a finite extension of Q, for some ¢, let H! (K, T) denote the subgroup
of H*(K,T) defined in Chapter I §3.1.

PROPOSITION 3.3. Suppose K is a finite extension of Qq, £ # p, and K is
the unique Z,-extension of K. If {cp} €  lim H'(F,T) then for every F
K Cf FCKoo

cp € HL(F,T).

PRrOOF. Let Z C Gk denote the inertia group. Since £ # p, K, /K is unrami-
fied, so 7 is also the inertia group in G for every F' C K. Thus for K C, F C K,
we have an exact sequence

0— H&r(FaT) - Hl(FvT) - Hl(IvT)GF'
Since ¢ # p, Proposition 2.7(iii) shows that H'(Z,T) is finitely generated over

Z,. Now taking inverse limits with respect to F' and applying Lemma 3.2 to the
Gk-module H'(Z,T) shows

lim H.(F,T) = lim H'(FT)
K C¢ FCKoo K Cf FCKoo
which proves the proposition. O

For the next two corollaries, suppose that K is a number field and K, is an
abelian extension of K satisfying

Gal(Ko/K) = Z¢, d>1.
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COROLLARY 3.4. Suppose
{er} € lim HYET).

K C; FCKoo
If KO, F C Ko, A is a prime of F' not dividing p, and the decomposition group of
X in Gal(Ko /K) is infinite, then (cp)x € HL.(F\,T).

PrOOF. Fix a prime A of K., above . Since the decomposition group of
A in Gal(K./K) is infinite, if KC, F C K we can find FC, F' C Fy, C K
such that Gal(F,/F') = Z, and X is undecomposed in F.,/F’. Thus Proposition
3.3 applied to the classes {(cz)x : F'C, L C Fu} shows that (cpr)5 € HY(F5,T).
Since this holds for all choices of A, and Corps,p(cr/) = cp, we deduce that (cp)x €
HL.(F\,T). O

The following corollary will be used together with Proposition 2.7 to study

lim H'(F,T).
K Cy FCKoo

COROLLARY 3.5. If S is a set of places of K containing all primes where
T is ramified, all primes dividing p, all primes whose decomposition group in
Gal(K«/K) is finite, and all infinite places then

lim HY(F,T)= lim H'(Ks/F,T)
K Cp FCKoo K FCKoo

where Kg is the mazximal extension of K unramified outside S.

PROOF. Suppose that
{er} € lim HYFT).
K C; FCKoo

Let Z C Gk be an inertia group of a prime q of K not in S and fix K C, F C K.
Since F/K is unramified at g, Z is also an inertia group of a prime Q of F above q,
so by Corollary 3.4 the restriction of cf is zero in H*(Z,T) = Hom(Z,T). It follows
that every cocycle representing cp factors through Gal(Kg/F'), which proves the
corollary. O

4. Induced modules

Again we suppose that G is a profinite group, and now H is a closed subgroup
of G and T is a discrete H-module (not necessarily a G-module).

DEFINITION 4.1. Define the induced module Indg (T) = Ind$(T) by
Indg(T) = {f € Maps(G,T) : f(ny) =nf(y) for every vy € G and n € H.}
We let G act on Indgy(T') by
(9f)(v) = f(vg) for g,y €G.

Since T is discrete, Indg (T) a discrete G-module.

If H = {1}, then Indg(T) is just Maps(G,T). If H' is a closed subgroup of
H then there is a natural inclusion Indgy (T') C Indg (7). If T is a G-module then
evaluation at 1 induces an isomorphism Indg(T) — T, and so there is a natural
(continuous) inclusion T' < Ind g (7T'), in which ¢ € T' goes to the map v — ~t.
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PROPOSITION 4.2. Suppose I is an open subgroup of G. For every i > 0 there
is a canonical isomorphism
H'(T,Indy(T))= € H'(gg™' NH,T).
gEH\G/T'
PROOF. First suppose i = 0. Fix a set S C G of double coset representatives
for H\G/T. If f € Indg(T)" then for every s € S,
f(hsy) =h(f(s)) forevery he H,veT. (2)

In particular if h € s['s™* N H, then hf(s) = f(s) and so f(s) € T(Ts™INH)
Conversely, if for every s € S we have an element f(s) € TsTs™'NH e can use (2)
to define an element f € IndH(T)F. This proves the proposition when ¢ = 0.

Now consider ¢ > 1. The functor T ~ Indg(T) is exact on the category of
discrete H-modules, so the proposition for 7" with ¢ > 1 follows from the case i = 0
and the Leray spectral sequence comparing the functors

A~ P AT A Indg(A), B~ B
geH\G/T
(see for example [Sh] pp. 50-51). O

REMARK 4.3. When I' = G, Proposition 4.2 is Shapiro’s Lemma.

COROLLARY 4.4. With T, G, and H as above, for every open subgroup I of G
there is an exact sequence
0 — Indy(T)" — Indgy(T)"
— (Ind{1}(7)/Ind g (T))" — HY(T,Indy(T)) — 0
PROOF. Proposition 4.2 with H = {1} shows that H*(T',Indy(T)) = 0, so

the exact sequence of the corollary is the beginning of the long exact I'-cohomology
sequence of the canonical exact sequence

PROPOSITION 4.5. Suppose K is a field, F is a finite extension of K, and T is

a discrete G -module. Let T = Ind{Gﬁ (T'). Then there is a commutative diagram
with ezact rows

TGx TG« (T/T)¢x —— HY (K, T) —=0
T e
0 TGr TCGr (T/T)%F ——= H"(F,T) —=0
iNF/K J/NF/K \LNF/K lcorp/;(
0 TG« TCx (T/T)%% — HY(K,T) —=0

PRrROOF. The horizontal sequences are the exact sequences of Corollary 4.4 ap-
plied with H = Gg and I' = Gk or Gr. The commutativity of the lower right
square is essentially the definition of the corestriction map, and the rest of the
commutativity is clear. O
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5. Semilocal Galois cohomology

Suppose for this section that K is a number field, q is a prime of K, F is a
finite extension of K, and S is the set of primes of F' above q. For every prime
Q € S fix a prime Q of K above Q and let Zg C Do C Gk denote the inertia
group and decomposition group of Q. Fix a Qp € S and write D = Dg,, Z = Zg,.-
Let go € Gk be such that Q = g7 'Qy, and then Dg = g; ' Dys.

Let T be a discrete G ix-module, and let 7/ C T be a subset which is a D-sub-
module, i.e., D sends 7" into itself. For every Q € S we let T, = g;'T”, and then
T} is a Dgo-module.

PropPOSITION 5.1. With notation as above, if i > 0 there is a canonical iso-

morphism
H'(FP,Ind3*(1")) = @5 H'(Fo,T).
QeSs
ProOOF. The map
D\Gk/Gr — S
DgGr — g 'Qp
is a bijection. Applying Proposition 4.2 with G = Gg, H =D, and I' = G yields
H'(F,Ind$*(T")) = @ H'(9Grg; ' ND,T)
Q€S

o @ H'(GrNDg,Th)
Qes

= @ H’L(ngT/Q)
Qes

so this proves the proposition. O

COROLLARY 5.2. With notation as above, there are canonical isomorphisms
HZ(GFaInd%(T)) = @ Hi(FQ7T)5
QeS
H'(Gp,nd}(T7)) = @) H'(Fo,T*2).
Qes
ProOOF. This is Proposition 5.1 applied with 77 = T and with 7" = T7. O
COROLLARY 5.3. Suppose F' is a finite Galois extension of K, T is a finitely
generated Z,-module with a continuous action of Gk, and let V =T ® Q.
(i) If [F : K] is prime to p, the restriction map induces an isomorphism

~ Gal(F/K)
HI(KQ7T) = (®Q\qH1(FQ7T)) * .

(ii) The restriction map induces an isomorphism

~ Gal(F/K)
Hl(KQaV) = (@Q\qu(FQ7V)) * .
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Proor. Using the discrete module T'/p™T we have a diagram
HY(K, IndgK (T/p"T)) — HY(Kq,T/p"T)

Resp l J{@Resg

H(F,Ind3* (T /p"T)) S 1K) = (@gesH' (Fo,T/p"T))
where the vertical maps are restriction maps and the horizontal maps are the iso-
morphisms of Corollary 5.2. The inflation-restriction sequence shows that the left-
hand vertical map has kernel and cokernel annihilated by [F : K], and hence the
right-hand map does as well. Taking the inverse limit of the right-hand maps and
applying Proposition 2.3 shows that the restriction map

Gal(F/K
HY(K,,T) — (®gesH" (Fo,T)) ™"

has kernel and cokernel annihilated by [F' : K]. This proves (i), and combined with
Proposition 2.4 it proves (ii). O

Gal(F/K)



APPENDIX C
Cohomology of p-adic analytic groups

1. Irreducible actions of compact groups

THEOREM 1.1. Suppose V is a finite dimensional Qp-vector space, and G is a
compact subgroup of GL(V') which acts irreducibly on V. Then H*(G,V) = 0.

The proof will be divided into a series of lemmas. For this section we fix a
finite dimensional Q,-vector space V and a compact subgroup G of GL(V') which
acts irreducibly on V', as in Theorem 1.1. Let Z denote the center of G.

LEMMA 1.2. Ifge Z, g # 1 then g — 1 is invertible on V.

PROOF. Let V; = ker(g — 1). Since g is in the center of G, V; is stable under
G. Since g # 1, V; # V', and hence by our irreducibility assumption V; = 0. O

LEMMA 1.3. If Z # {1} then H'(G,V) = 0.

PRrROOF. Suppose that g € Z, g # 1, and let B be the closed subgroup generated
by g. We have an inflation-restriction exact sequence

0 — HY(G/B,VP) — HYG,V) — HY(B,V).
By Lemma 1.2, VB = 0 and
HYB,V)cV/(g—1)V =0. O

LEMMA 1.4. Suppose U is an open normal subgroup of G. Then V is completely
reducible as a representation of U.

PROOF. Let V denote the subspace of V generated by all irreducible U-
subspaces of V. Since U is normal in G, Vj is stable under G. Clearly V # 0, so
the irreducibility hypothesis for G implies that Vy = V. It follows easily that V is
a direct sum of a finite collection of irreducible U-subspaces. O

For a general reference for the material on p-adic Lie groups, Lie algebras, and
their cohomology which we need, see [Laz] or [Bo].

PROPOSITION 1.5. Lie(G) is reductive.

PRrROOF. It follows from Lemma 1.4 that the representation of Lie(G) on V is
semisimple, and it is clearly also faithful. By [Bo] §1.6.4 Proposition 5, it follows
that Lie(G) is reductive. O
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ProOF OF THEOREM 1.1. The compact subgroup G of GL(V) is a profinite
p-analytic group in the sense of [Laz| §I11.3.2. Therefore by Lazard’s Théoréme
V.2.4.10, for every sufficiently small open normal subgroup U of G,

HYG,V)=HYU, V)Y = H (Lie(G), V)©.

If the center of Lie(G) is zero then (since Lie(G) is reductive by Lemma 1.5) Lie(G)
is semisimple, and in that case (see [Bo] Exercise 1(b), §1.6) H!(Lie(G),V) = 0. If
the center of Lie(G) is not zero then every sufficiently small open normal subgroup
U of G has nontrivial center, and then Lemmas 1.3 and 1.4 together show that
H'Y(U,V) = 0. Thus in either case we can conclude that H'(G,V) = 0. O

LEMMA 1.6. Suppose O is the ring of integers of a finite extension ® of Q,,
V is a ®-vector space and G acts ®-linearly. If G contains an element g such that
dimg(V/(g — 1)V) =1, then Z acts on V via scalars in O*.

PRrOOF. The one-dimensional subspace ker(g — 1) of V' is preserved by Z. Let
X : Z — Aut(ker(g — 1)) = ®* be the character determined by this action. Since
Z is compact, x(Z) C O*. Let

Vy ={v eV :zv=x(2)v for every z € Z}.

Then V,, is nonzero and stable under G, so the irreducibility of V' implies that
Vi=V. O

PROPOSITION 1.7. Suppose A is an abelian quotient of G. Then the projection
of Z to A has finite cokernel.

PrOOF. Let m : G — A be the projection map. Since A is compact, it is a
finitely generated Z,-module.

By Proposition 1.5, G is reductive. It follows easily that the induced map of
Lie algebras maps the center of Lie(G) onto Lie(A), and hence [A : 7(Zy)] is finite
where Zp is the center of a sufficiently small open normal subgroup U of G.

The finite group G/U acts on Zy by conjugation, and we define (writing Zy

as an additive group)
N(z) = Z 29.

geG /U
Clearly N(Zy) C Z, and also (since ker(w) contains all commutators) m(N(z)) =
7([G : Ulz) for every z € Zy. Therefore n(Z) contains [G : Uln(Zy). This
completes the proof. O

2. Application to Galois representations

For this section fix a (possibly infinite) Galois extension F'/K of fields of char-
acteristic different from p, and a subgroup B of K*. (In our applications, K will
be a number field, ' will be an abelian extension of K and B will be O.) Suppose
O is the ring of integers of a finite extension ® of Q,,, and V' is a finite-dimensional
d-vector space with a continuous ®-linear action of Gk, such that V is irreducible
over Gr. Let Q = F(upm,Bl/ P* V), the smallest extension of F' whose absolute
Galois group acts trivially on g, BY/P” and V. The result we will need is the
following.
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THEOREM 2.1. One of the following three situations holds.
(i) HY(Q/F, V) =0.
(ii) Gg acts on V wia a character p of Gal(F/K), and Gal(F/K) acts on
HYQ/F,V) via p.
(iii) B is infinite, Gi acts on V via ecycp where ecye is the cyclotomic character
and p is a character of Gal(F/K), and Gal(F/K) acts on H*(QY/F,V) via
p.
PrOOF. Let Qy = F(V), the smallest extension of F' such that Gq, acts
trivially on V (so Qy = FH where H = ker(Gp — Aut(V)), and Qy is necessarily
Galois over F'). Define D = Gal(Qy /F'), and Qv,,, = Qv (). We have a diagram

Q

/

P
\/

The inflation restriction exact sequence gives
HY(D,V) — HY(Q/F,V) — H'(Q/Qy,V)?

The map D — Aut(V) is injective by definition of Qy, so D is isomorphic to a
compact subgroup of GL(V). We have assumed that D acts irreducibly on V', so
Theorem 1.1 shows that H'(D, V) = 0 and we get an injection

HY(Q/F, V) — HY(Q/Q, V)P = Hom(Gal(Q/Qy), V).
If Hom(Gal(2/Qy ), V)P = 0 then (i) holds. We consider two cases.

Case I:  Qy, # Qy. In this case Gal(Qy,,/Qv) acts on Gal(Q2/Qy,,,) via the
(nontrivial) cyclotomic character. Let €, denote the maximal abelian extension
of Qy in Q. Then Gal(Qy,,/Qv) acts on Gal(Q.,/Qv,y,) trivially and via the
cyclotomic character, and it follows that Gal(Qa,/v,,.) is killed by |p, N Qy|,
which is finite since Qy,,, # Q. Hence Hom(Gal(Qa,/Qv,.), V) =0 so

Hom(Gal(2/Qy), V)P = Hom(Gal(Qup/Qv ), V)P
= Hom(Gal(Qy,./Qv), V)P = Hom(Gal(Qy,,,/Qv), V)

since D (and in fact all of Gal(Qy/K)) acts trivially on Gal(Qy,,/Qyv). Since D
acts irreducibly on V, either VP = 0 or V is one-dimensional with trivial action of
Gr. Therefore (i) or (ii) is satisfied in this case.
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Case II:  Qy,, = Qy. In this case p,. C Qy, Gal(Q2/Qy) is abelian, and
Gal(Qy /K) acts on Gal(2/Qy) via the cyclotomic character. Thus

Hom(Gal(2/Qy), V)P = Hom(Gal(/Qy), VEere)

where Veeve denotes the subspace of V' on which D (and hence Gr) acts via ecye.
Again, since D acts irreducibly on V', either Vv = 0 or V is one-dimensional with
G acting via ecy.. Therefore (i) or (iii) is satisfied in this case. O

COROLLARY 2.2. Suppose T is a finitely generated O-submodule of V', stable
under G, and let W =V/T. Then one of the following three situations holds.
(i) HY(Q/F,W) is finite.
(ii) Gk acts on T wvia a character p of Gal(F/K), and H*(Q/F,W) has a sub-
group of finite index on which Gal(F/K) acts via p.
(iii) B is infinite, Gk acts on T via €cyep where ecyc is the cyclotomic character
and p is a character of Gal(F/K), and H'(Q/F, W) has a subgroup of finite
index on which Gal(F/K) acts via p.

PrOOF. Since Gal(2/F) is (topologically) finitely generated, it follows from
Proposition B.2.4 that the map H'(Q/F,V) — H'(Q/F,W) has finite cokernel.
Now the corollary is immediate from Theorem 2.1. O



APPENDIX D
p-adic calculations in cyclotomic fields

In this appendix we carry out some p-adic calculations in cyclotomic fields
which are used in examples in Chapters IIT and VIII. Everything here is essentially
well-known, due originally to Iwasawa and Coleman.

For every n > 1 fix a primitive n-th root of unity (, such that (.,

= (py, for
every m and n. By slight abuse of notation, for every n we will write Z,[u,,] =

Z|p,] ® Z,, the p-adic completion of Z[u,, |, and similarly Q,(u,,) = Q(i,,) ® Q,.
Define

log : Zp [, J[[XT]* = Zop[p,, ] x (1 + XZp [, ][ X]]) — Qp(pe,)[[X]]
by combining the p-adic logarithm on Z,[u,]* and the power series expansion of

log(1+ X f(X)).
If o € Z,, define

(X)=(1+X)"—-1¢e€ XZ,[[X]].
Let D be the derivation (1 + X)-% of Q,[[X]]. Then for every a € Z, and g €
Qu[[XT],
Dla] = a-([a](X)+1) and D(gola]) = a-(Dg)ea].

If m is prime to p we let Fr, be the Frobenius of p in Gal(Q(w,,)/Q), the
automorphism which sends ¢, to ¢¥,. We let Fr,, act on Q,(u,,)[[X]] by acting on
the power series coefficients.

1. Local units in cyclotomic fields

In this section we will construct, for every positive integer n, a homomorphism
An 1 Zp[p,]* — Z,. These maps are used in Chapter III §4 to construct an Euler
system for the trivial representation Z,.

Fix an integer m prime to p. Define

e et MGk [m~1B)(X)
fm(X) - Cm[ ](X) ‘(Z;)( )tors' ﬁe(zz;;)wrs 5 € ZP[IJ‘m][[X]]

and

G (X) = G log(1 + X) —m Y _pich
=1

0o, LBy : -
+;(fm ([Z;](X)) (G = i) log(1+ X))

163
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Lemma 1.1(i) below shows that this sum converges to an element of Q,(g,,,)[[X]],
and a direct computation shows that
pitl
G

T 2 o) @

DG (X) = G+ > (¢l m™'p'](X) -
=0 BE(Z} )tors
LEMMA 1.1. (1) Gm(X) € Qp(p,)[[X]], i-e., the sum in the definition of

Gm(X) converges.

(i) There is a unique gm(X) € Zpp,,)[[X]], gm(X) = 1 (mod (p, X)), such
that 10g(gm(X)) = G (X).

(iil) If £ is a prime different from p then

DG (X)) if hm

Tr DGy (X) =
Qp () /Qp (12,) PG (X)) {0 i 0] m.

. Frp,
(iv) 2eep, Im(C(A+ X) —1) = Gun" ([pI(X)).
(V) If gm is as in (ii), then HC@L,, Ign(C(1+X)—1)= gfnrv([p](X))

ProOF. The first two assertions follow from Theorem 24 of [Co| with a =
—m Y2 pICE T, b=y and F(X) = F(X) — (Gn — ¢B)X . Assertion (iii) follows
directly from (1) and the fact that

Fr, !
—Cm* if £fm
Tr =
Qut )/ Q) ot {0 it 0] m.

The fourth assertion is similarly a direct computation, and then (v) follows from
(iv), since log is injective on 1 + (p, X)Z,[p,, ][ X]]- O

DEFINITION 1.2. Suppose m > 1 is prime to p, and let N(m) =[] L.

Let g (X) € Zy[p,,][[X]]* be as in Lemma 1.1(ii). For n > 0 define

Fro "
Amppn = H (gd P (Cp” - 1)) € Zp[“mp"]x'
d|lm,N(m)|d

primes £ | m

By Lemma 1.1(v),

N lynpn ifn>1
QK pn+1)/ Qypn ) Xmpntt = a?lﬂ—Fr;1 =0

Suppose B is a prime of Q(u,,,) above p. We will also write P for the unique prime

of Q(4,,n) above B, for every n. We let avy, p € Gal(Q(/J,mpoc)a(;/Q(umpoc)m) be
the image of {ampn }n>1 under the Artin map of local class field theory. Using the
Kummer pairing we define

)\mpn : Zp[l‘l’mp"}x - ZP
by, writing u € Zj[t,,,,n]* as (ugp) € @pr[umpn]%,

(ué’;n)am,‘l}*l _ C’r‘r}l)\mpn(u)
Blp

The explicit reciprocity law gives the following description of the map Ajpn.
Recall that D is the derivation (1 + X)-%.
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PrOPOSITION 1.3. If m is prime to p and n > 0 then

Ampn (W) = p7"TrQ, () /Qy (Tmpr 108, (1))

where log,, is the usual p-adic logarithm and

mt Y (DG ) (G — 1) ifn>0
Ty = d|lm,N(m)|d L -
m™t > (DGa)(0) — =(DG, * )(0) ifn=0.
dlm,N(m)|d p

PrROOF. The formula for A~ (u) is the explicit reciprocity law of Wiles [Wi]
(see also [dS] Theorem 1.4.2) in the present situation. O

LEMMA 1.4. For every m > 1 (not necessarily prime to p) and prime £, there
is a commutative diagram

ZP [l’l’ml] X Aome

1 or —FrZJ \ Z
p
i

ZP [”’m] x "

the inclusion Zp(p,,]* C Zplppme)*  if £|m or £ =p,

where the vertical map is ) - :
—Fr, followed by that inclusion if £4mp.

PROOF. Let the x,, be as defined in Proposition 1.3. Using Lemma 1.1(iii)
and (iv) we see that

~Fr, 'z, if Cfmp

Tr ml =
Qo (Hn0)/ Qp (1) Tl {xm if¢|morl=np.

for every m and ¢. Now the lemma follows from Proposition 1.3. O

Let w denote the Teichmiiller character giving the action of Gq on p,, (if p is
odd) or p, (if p = 2).

LeEMMA 1.5. Suppose O is the ring of integers of a finite extension of Q,,
and x : Gq — O* is a character of finite order. Let f be the conductor of x,
and suppose that p> 1 f and x ‘w(p) # 1 (where we view x 'w as a primitive
Dirichlet character). Let A = Gal(Q(py)/Q). Then Y 5o X(é)/\‘; generates the

O-module Horll(Zp[uf]X,(Q)’(1 (the submodule of Hom(Zp[p]*,O) on which A
acts via x~1).

PROOF. Let Ar\ = > 5cn X(5)/\‘}. Write f = mp® with m prime to p, e = 0
or 1. Let x be as in Proposition 1.3, and let y¢ be the “conductor f” part of x,
namely

LI (DGO ~ DG )0) = G - 37 ire=0
m (DG )G — 1) = m M (Cr + 7276m) ife=1.
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By Proposition 1.3,

M) =p~ > x(0)Trq, (u,)/q,2F log,(u)

dEA

=07 > X(0)Trq,(u,)/q, ¥} log, (v)
ISYAN

=p € Z Z yf"/ logp (u™)
SEA~vEA

=p Y (X)) > (' (1) log, (u7)
dEA YEA

1
=50 —p 'x(0) Y (x(6)¢H D (x (1) log, (u)).
dEA YEA
First suppose p 1 f, so x(p) € O*. Let g, be as in Lemma 1.1(ii) and let
u = gin(0)V/™ € Zy[pyg]*. Then log,(u) = m™"Gm(0) = — 3272, p'¢h, ", s0
> () log,, (u)) Zp St e )
YEA i=1 YEA
- —Zpl ) Y G
YEA
Thus
1 i
Ar() = 5 (x(p) — ) ST ) Y ()¢ Y ()¢
i=0 seA vEA
— X Zp1 —i— 1 E O%

the last equality since the product of the two Gauss sums is x(—1)f.

—1
Now suppose p | f, but p? 1 f, and take u = (gfn\rp (¢p — 1))1/m € Zy[psl™.
Then

log, (u) = m ™ Gon" G- 1)

1 _ -1, ;1 i (i+1)
=(1-—= X wo o) (@G -n) =Y r
p gEA i=1
T1Q(pr) =Frp

so with this choice, since (g;lgj"ﬂ =(y,

S og, ) = (1= =5 3 wle (@) 6 G

yEA ocEA YEA
Q) =Frp

=1 —xw ' () Y _(x(ME)
YEA
and

Apx(u) = %(1 —xw ' 0) Do) D (T = X1 — xw(p) ) € 0%

dEA YEA
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In either case the p-adic logarithm shows that Hom(Z, [ ]*, (’))X71 is a rank-one
O-module, which is clearly torsion-free and hence free. The formulas above show
that

—1

Ax & pHom(Zy[p ], O)X

where p is the maximal ideal of O, and the lemma follows. O

2. Cyclotomic units

For this section suppose that m > 1 and m is prime to p. Fix an embedding
Q, C C and let ¢, = e2™/" for every n € Z1. Define

-1
U (X) = Cn(1+X)™ =1 € Zp[p,,][[X]].
LEMMA 2.1. Suppose m > 1, m is prime to p, v € Gal(Q(n,,,)/Q), and
C%pn = ffnpn with b € Z.. Then for every k > 2 and n > 0,
(D*logum® ")(¢n — 1)
= (=1)* 1T (k) (2mi) ~Fp™* (((b, mp™; k) + (—1)*C(—b, mp™; k))

where ((a,r;s) is the partial Riemann zeta function Z i e,

j=a (mod r)
PROOF. Since m > 1 and m is prime to p, we see that u,,(0) € Zy[u,,]*.
Therefore " e Z,[p,,)[[X]]* and log Un” " is defined. Thus
Fro™
1+ X) (um” ") (X)
ubre " (X)

(D*log ug;nw)(g&;n —1) =D+ (
X:(anl
e T x

WA+ X)) -1

X:(f]n -1

—k pk—1 ¢ (1+ X)
P14+ X) — 1

=m

-1
X=¢hmm -1

Substituting ¢ =1 + X, % =1+ X)%, this becomes

G (1+X)
P+ X) -1

k—1 bp~™ 7
_ -k d G e

—k nk—1
m D - deil <%77L6271

—1 —1
X=¢hm -1 eZ=Cbm

_ 2mib
L=

By [A]] equation (10), p. 187 (or just observe that the difference is a bounded
entire function which vanishes at 0)

Z

e 1 1 1
e? —1 _2+;<Z2mn+2m’n)'
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Thus for k> 2, r > 1, and c € Z — rZ,

=t e k-1 kK
— =(-1 — D2
dzZF=1 €2 — 1|, _smic (=)™ (k ) Z ¢+ nr)k
v nGZ
= (=DM IT (k) 2mi) TR (C (e, k) + (1) ¢ (e, k).
Combining these formulas proves the lemma. O
Define
() = ] (14 X)7 = D (14+X)7 — 1)
ﬂE(Z;; )tors

where ,,(X) =1— (' (1+ X)milv and
Hon (X) = log hp(X) — 11og RE (14 X)P —1).
p

For every n > 1 write A, = Gal(Q(u,,)/Q) and At = Gal(Q(u,,) " /Q).

LEMMA 2.2. Suppose p > 2, and let w be the Teichmdiller character giving the
action of Gq on w,. Suppose O s the ring of integers of a finite extension of Qp,
and x : Gq — O is a nontrivial even character of finite order, unramified at p. If
m is the conductor of x then

> X' DFHL (G - 1)

yeah

_ o=k (=1 k —x(p)p* ifp—11k
= 2T (k)(—2m) ""L(x " w", k) x {lpklx(p) iFp—11k.

Proor. We have
DFH}, (G — 1) = DX log b, (G, — 1) — p* ' D¥ log hly» (0).
If<:<p or (=1,

DFloghl,(C—1)= > p"D"logu},(¢? — 1)+ "D loga, (¢ — 1)
BE(Z] )tors
= Z w*(o)DF logul? (¢ — 1).
oc€Gal(Q(kynp) /Qk)T)

Thus by Lemma 2.1, writing L, (x~'w¥, 5) for the Dirichlet L-function with Euler

factors for primes dividing r removed,

> XM DEH (G - 1)

yeAl

= > W) (DM logun ¢y — 1) — T DF log uly(0))
YEAmp

= (=D T(k)2md) """ (1 + (1) "X T W (= 1))x(p) Linp (X", k)

— PP EDMIT () 2md) (4 (D)) L (X E) Y ().
YEA,
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Note that x~!w¥(—1) = (=1)*. If p— 1 { k then D oea, wk(y) =0, and we are left
with
=20 (k)(=2m)~*p*x(p) L(x ' w", k).
If p— 1| k then w* =1, and we get
20(k)(—2m0) "X (P)L(x ™1 k) (=P (L = x " () ™*) + (p — 1)p™ )
= 20(k)(=2mi) "L{x" 1, k) (1 = "' x(p)).
This completes the proof. O
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