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1. Introduction. If we wish to write the equations of curves of genus 1 that give
elements of the Shafarevich-Tate group of an elliptic curve over a number field K, a choice
of ways is open to us. For example, if the element in question is of order 3 the curve of
genus 1 corresponding to it occurs as a smooth plane cubic curve over K.

In a recent article [C-M] we raised the question of when one can find the curves of genus
1 corresponding to at least some of the elements of Shafarevich-Tate groups as curves in
abelian surfaces over K. Adam Logan, using data and programs due to Cremona, studied
this question numerically for semistable optimal elliptic curves E over Q of square-free
conductor N less than about 3000, and for the odd part of their Shafarevich-Tate group.
By an “optimal” elliptic curve (or in older terminology, a ”strong Weil” curve) we mean
that there is a modular parametrization φ : J0(N) → E where N = the conductor of E,
J0(N) = the jacobian of the modular curve X0(N), and such that the kernel of φ is an
abelian variety. Any modular elliptic curve is isogeneous, over Q, to a (unique) optimal
elliptic curve, and any optimal elliptic curve of conductor N is isomorphic, over Q, to an
elliptic curve in J0(N). Logan studied the elements of the Shafarevich-Tate group of such
optimal elliptic curves, and sought, in effect, to realize the corresponding curves of genus 1
in question as subcurves defined over Q within abelian surfaces contained in the new part
of J0(N). If E is an optimal elliptic curve for which we can successfully do this for each
of the elements of the Shafarevich-Tate group of E, let us say that we have visualized the
Shafarevich-Tate group of E in abelian surfaces in the new part of the modular jacobian.

With this understanding, Logan found, for all the cases but one of elliptic curves E
that he examined (e.g., squarefree conductor < 3000 with the odd part of the Shafarevich-
Tate group nontrivial) that all the elements of the Shafarevich-Tate group of these E’s
are visualizable in abelian surfaces in the new part of the modular jacobian. The one
curve for which this is not true is the one labelled 2849A in Cremona’s tables, which has
Shafarevich-Tate group of order 9: none of the curves of genus 1 corresponding to nontrivial
elements of its Shafarevich-Tate group occur as sub-curves of J0(2849), let alone occur
within abelian surfaces contained in J0(2849). In performing some of these computations,
the Birch and Swinnerton-Dyer conjectures were relied upon, and therefore let us officially
assume that conjecture. There was also another technical “caveat” (later removed!) to
these computations for a detailed discussion of which the reader should consult [C-M].

An extension of this numerical investigation is reported in [C-M], where all optimal
modular elliptic curves E over Q of conductor N < 5500 are examined (N not necessarily
square-free). One of the great surprises (at least to us) was that there continued to be
an “unreasonably” large number of such elliptic curves E with Shafarevich-Tate group
visualized in abelian surfaces. Quite often, for a given elliptic curve E, it was even the
case that all the elements of its Shafarevich-Tate group were representable by curves of
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genus 1 in a single abelian surface contained in the new part of the modular jacobian. I
say “unreasonably” since in any instance where this happens, it comes (given our present
state of understanding of the phenomenon) as a very lucky accident. Moreover, (for reasons
outlined in [C-M]), it is not the sort of thing we would expect to happen at all for the
p-primary components of the Shafarevich-Tate group if p is a large prime number.

The luckiness of this data deserves explanation. In searching for such explanation
(and I should say that we are still very far from a completely satisfactory one!) I was led
to prove that for any number field K, any elliptic curve E over K, and any element σ of
order three in the Shafarevich-Tate group of E over K, there is an abelian surface A over
K containing a curve of genus 1 (over K) which represents the element σ.

Most of the present article is devoted to a proof of this result (formulated in the
corollary at the end of section 2). Our proof comes from a construction which has some
side benefits. For example, along the way we will produce (over any number field K)
elliptic fibrations over the projective line over K, possessing no K-rational section, whose
total space is birationally isomorphic to P2 (and therefore the elliptic surface has a large
supply of K-rational points), and having the further property that every smooth fiber of
the elliptic fibration that has any K-rational point at all, has an infinity of them. That is,
any smooth fiber of these elliptic fibrations possessing a K-rational point has the property
that it is isomorphic over K to an elliptic curve with Mordell-Weil rank over K which is
≥ 1. One is led, by the existence of such elliptic fibrations, to ask whether one can find even
“better” ones. For example, for which positive integers r can one find a (non-isotrivial)
elliptic fibration over P1 (over the base field Q) with a Zariski-dense set of Q-rational
points, possessing no Q-rational section, and with the property that any smooth fiber that
possesses one Q-rational point is isomorphic over Q to an elliptic curve with Mordell-Weil
rank over Q which is ≥ r?

2. Visible elements in the Shafarevich-Tate group. Let us briefly recall the
basic definition of [C-M]. Let K be a number field, K̄/K an algebraic closure, and GK =
Gal(K̄/K) the Galois group. If E is an elliptic curve over K, and if we are given an
imbedding over K of E into an abelian variety J , we form the exact sequence of abelian
varieties

(∗) 0 → E → J → B → 0,

and say that an element σ ∈ WC(E/K) ∼= H1(GK , E) (the Weil-Châtelet group of iso-
morphism classes of torsors for E over K) is visible in J if σ is in the kernel of the natural
homomorphism

WC(E/K) → WC(J/K).

As discussed in [C-M], the element σ is visible in J if and only if there is an element
β ∈ B(K) such that σ is represented by a curve T of genus 1 defined over K contained in
the variety J and such that T is the inverse image of the point β ∈ B under the projection
J → B. Such a T is nothing more nor less than a translation of E by a point P ∈ J(K),
the point P projecting to β under the natural mapping J → B. Thus

T := E + P ⊂ J,
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and we might note that if σ 6= 0, the point P is not rational over K despite the fact that the
translate E + P is defined over K. To signal the above relationship we will sometimes say
that this element β (which is well-defined modulo the image of J(K) in B(K)) explains
σ.

To analyze this further, suppose we are given a pair ((∗), σ) consisting of an exact
sequence of abelian varieties over K,

(∗) 0 → E → J → B → 0,

with E an elliptic curve, and σ an element in WC(E/K) ∼= H1(GK , E) which is visible in
J .

By Poincaré’s complete reducibility theorem (cf. [Mum] Theorem 1, Ch VI section
19) we may find a complementary abelian variety to E in J , over K. That is, there exists
B′ ⊂ J , an abelian subvariety of J , defined over K, with the property that J = E + B′

and E ∩B′ is finite. Fix such a complement B′ ⊂ J and put E′ := J/B′.

We have that the projections B′ → B, and E → E′ are both isogenies and both of
these isogenies have the same kernel– namely, the finite group Φ := E ∩B′ ⊂ J viewed as
subgroup of B′ or as subgroup of E ( we may think of Φ = E∩B′ as the finite GK-module
(E ∩B′)(K̄) = E(K̄) ∩B′(K̄)).

Consider the long exact sequence in GK-cohomology associated to the exact sequence

(∗) 0 → Φ → E → E′ → 0,

and note that since σ ∈ H1(GK , E) is visible in J and the isogeny E → E′ factors through
J , it follows that σ is in the image of the natural homomorphism

H1(GK ,Φ) → H1(GK , E(K̄)).

Let us now, for definiteness, make the following further hypothesis:
Hypothesis. The natural homomorphism E(K) → E′(K) is surjective.

For example, in the special case where Φ = E[N ] is the kernel of multiplication by
a positive integer N , and the Mordell-Weil group of E over K is a finite group of order
prime to N , the above hypothesis holds.

Under this hypothesis, the natural homomorphism H1(GK , Φ) → H1(GK , E(K̄)) is
injective, and there is a unique cohomology class η ∈ H1(GK , Φ) which maps to σ.

Lemma 1. Under the above hypothesis, the image of η in H1(GK , B′(K̄)) is zero. If
β ∈ B(K) maps to η in the long cohomological exact sequence

B′(K) → B(K) → H1(GK , Φ) → H1(GK , B′(K̄)),

then β (in B(K) modulo the image of J(K)) explains σ, in the sense introduced above.
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Proof. This is a straightforward diagram-chase. The point is that we have an exact
sequence of abelian varieties over K,

0 → B′ → J → E′ → 0,

and under our hypothesis, the mapping J(K) → E′(K) is surjective, and therefore the
natural mapping H1(GK , B′(K̄)) → H1(GK , J(K̄)) is injective.

To summarize, if we are given E ⊂ J over K and σ ∈ H1(GK , E(K̄)) which is visible
in J , and if in addition we are given an abelian subvariety B′ ⊂ J which is complementary
to E for which the above hypothesis holds, we get a quadruple (E, B′, Φ, η) where

• E is an elliptic curve, B′ is an abelian variety over K, Φ is a finite GK-module given
with GK-equivariant imbeddings Φ ↪→ E, Φ ↪→ B′ into both E and B′, and

• η ∈ H1(GK ,Φ) projects to σ ∈ H1(GK , E(K̄)) and to 0 ∈ H1(GK , B′(K̄)).

There is a “converse” to the above discussion, in the following sense. Suppose we are
given a quadruple (E,B′,Φ, η) satisfying the conditions stipulated in the bullets above. In
particular, we have E an elliptic curve and we can consider σ ∈ H1(GK , E(K̄)), the image
of η under the inclusion mapping Φ → E(K̄). Running the above argument in reverse, we
get:

Lemma 2. There is an abelian variety J̃ over K, and an injection E ↪→ J̃ such that σ is
visible in J̃ .

Proof. Imbed Φ into the abelian surface E × B′ by the “diagonal” mapping, and let J̃
be the abelian surface over K given by

J̃ := (E ×B′)/Φ.

The inclusion of E as the first factor of E×B′ induces a natural inclusion E ⊂ J̃ . Letting
B := J̃/E be the quotient abelian variety, we get two exact sequences of GK-modules,

0 → Φ → B′ → B → 0,

and
0 → E → J̃ → B → 0,

and the proof that the image of σ in H1(GK , J̃) vanishes is a direct check, comparing the
long exact sequences of cohomology coming from these exact sequences.

In the present article, we will be particularly interested in the notion of visibility in
abelian surfaces J . Therefore we will be focussing on quadruples (E, B′, Φ, η) as above,
but where the complementary abelian variety B′ is also an elliptic curve. We reserve the
letter F (= B′) for such complementary elliptic curves. Note that in the case where the
complementary abelian variety of the quadruple is an elliptic curve and the finite group
Φ is equal to E[N ] (the kernel of multiplication by a positive integer N in E) the data of
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the quadruple is given simply by a pair of elliptic curves E and F over K together with a
GK-equivariant isomorphism

α : E[N ] ∼= F [N ]

between groups of N -torsion (this is signalled colloquially by saying that “E and F are
N -congruent over K”) and a cohomology class η ∈ H1(GK , E[N ]) with the property that
the image of η in H1(GK , E) is σ while the image of α · η ∈ H1(GK , F [N ]) in H1(GK , F )
vanishes. In this case, the above abelian surface J̃ containing E and rendering σ visible
is given by the quotient of E × F by the finite subgroup E[N ] imbedded in E × F via
the mapping ι × α · ι where ι refers to either of the natural inclusions, E[N ] ↪→ E and
F [N ] ↪→ F .

Here is our main result, whose proof will be completed in section 3 (see Corollary 1
there).

Proposition. Let K be any number field, E any elliptic curve over K, and h ∈
H1(GK , E(K̄)[3]) such that the induced element σ = ι · h ∈ H1(GK , E(K̄)) is in the
Shafarevich-Tate group of E over K, i.e., σ ∈ Sha(E/K) ⊂ H1(GK , E(K̄)). Then there is
an elliptic curve F over K and a GK-equivariant isomorphism α : E[3] ∼= F [3] such that
the image of α · h ∈ H1(GK , F (K̄)[3]) in H1(GK , F (K̄)) vanishes.

Corollary. Let K be any number field, E any elliptic curve over K, and σ ∈ Sha(E/K)[3].
Then there is an abelian surface J̃ over K containing E such that σ is visible in J̃ .

The Corollary follows directly from the Proposition together with Lemma 2.

3. Proof of the Proposition. Let us begin by considering the modular curve X(3)
over Q classifying pairs {F, α} where F is an elliptic curve (or, to include the cusps, a
“generalized elliptic curve”; cf. [D-R]) and where α is a level 3 structure on F “based on
Z/3Z× µ3” and of determinant 1 ; that is,

α : Z/3Z× µ3 → F [3]

is an isomorphism, and the natural isomorphism it induces on wedge-squares is “the iden-
tity”. It makes sense to ask that this natural isomorphism be the identity, for domain
and range are canonically isomorphic: ∧2(Z/3Z× µ3) is naturally isomorphic to µ3, as is
∧2(F [3]) using the Weil pairing on 3-torsion in F . Let S → X(3) denote the universal el-
liptic curve (over the cusps this is only a “generalized elliptic curve” ) with level 3 structure
based on Z/3Z×µ3. That is, S represents the moduli problem of classifying isomorphism
classes of triples {F, α, P} where {F, α} represents a point of X(3), and P is a point of
F . We find it more convenient to work with the compactification of S which we denote
S and which, as surface over Q, was constructed by Hesse in the late 19th century (cf. a
discussion of this surface in [R-S]). The surface S ( over Q ) is conveniently expressed as
the bihomogeneous hypersurface in P1 ×P2 (of bidegree (1, 3)):

s(X3 + Y 3 + Z3) = tXY Z,
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where (s, t) are homogeneous coordinates of P1 and (X,Y, Z) are homogeneous coordinates
of P2. To see S as a “generalized elliptic curve” we must specify a section to be the zero
section; let us choose the section (X,Y, Z) = (1,−1, 0) to play this role.

The coordinates (s, t) give us a rational parametrization of X(3) ∼= P1 and the projec-
tion of S to the first factor of P1 ×P2 is, given this identification X(3) ∼= P1, the natural
projection S → X(3). Let Y (3) ⊂ X(3) denote the complement of the four cusps. The
(s, t)-coordinates of these cusps are (0, 1) and (ζ, 3) where ζ ranges through all three cube
roots of 1. The restriction of S to Y (3) is a (“genuine”) elliptic curve (over Y (3)). The
quasi-projective variety S ⊂ S which is the total space of a generalized elliptic curve over
X(3) is the complement of twelve points in S lying over the cusps in X(3) ( the (X, Y, Z)-
coordinates of three of these twelve points being the cyclic permutations of (0, 0, 1) and
the nine others being of the form (1, ζ, ζ ′) where ζ and ζ ′ run through all cube roots of 1).

The projection to the second factor of P1 × P2 gives us a regular mapping S → P2

(over Q) which is a birational isomorphism and which consists in blowing-down the nine
curves in S given by the locus XY Z = 0 to the nine points

{(0,−1, ζ), (−1, ζ, 0), (ζ, 0,−1)} ⊂ P2

where ζ runs through the three cube roots of 1. These nine exceptional curves are, in fact,
sections of S over X(3). Each of these nine sections is rational over Q(

√−3), and their
union is precisely S[3], the kernel of multiplication by 3 in the (“generalized”) elliptic curve
S/X(3). Let us refer to these nine curves/sections as

C := {C(0,−1,ζ), C(−1,ζ,0), C(ζ,0,−1)}.

It is a theorem of Igusa [I] that these nine sections comprise the entire Mordell-Weil
group of S over the base X(3), and this is true even “geometrically”, i.e., even when we
make the groundfield base change from Q to C. (For the analogous theorem for X(N)
over characteristic 0 fields for all N > 2 see [Sh]; results of Silverberg provide further
generalizations of this result to families of higher-dimensional abelian varieties.)

To “name” specific generators of the group of Q̄-rational points of S[3], set P1 :=
(0, 1,−1), and Qζ := (0,−1, ζ) where ζ is a primitive cube root of unity. The mapping
1 7→ P1 induces an injection of the constant group scheme Z/3Z into S[3] while the mapping
ζ 7→ Qζ induces an injection of the multiplicative-type group scheme µ3 into S[3]. These
mappings allow us to make the identification of the finite group scheme S[3] over X(3)
with the pullback of the group scheme Z/3Z × µ3 over Spec(Q) to the Q-scheme X(3).
This also gives us a convenient choice of basis {P1, Qζ} of the two-dimensional F3-vector
space of Q̄-rational points of S[3].

For consistency with conventions to be made later, let us use the notation S̃ to refer to
the “blow-down” in S of the nine exceptional curves in C, noting that, first, S̃ is naturally
defined over Q since the set C of exceptional curves being blown down is Gal(Q̄/Q)-stable,
and second, that we have a canonical isomorphism

S̃ ∼= P2.
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A brief digression: the Heisenberg description of S. Consider the GQ-group
Z/3Z×µ3 and let t, z ∈ Z/3Z×µ3 project to the generators of the first and second factors
respectively, and project to zero in the second and first factors respectively. To be specific,
let t project to 1 ∈ Z/3Z and z to the primitive cube root of 1 which we will denote ζ3 ∈ µ3.
Define a homomorphism of the GQ-group Z/3Z× µ3 into PSL3(Z[µ3]) by putting

t : (X,Y, Z) 7→ (Y, Z, X)

and
z : (X,Y, Z) 7→ (X, ζ3 · Y, ζ2

3 · Z).

This comes from a representation of the (Heisenberg) extension of the GQ-group Z/3Z×µ3

by µ3 to GL3(Z[µ3]), so let me refer to the corresponding action of Z/3Z × µ3 on P2 as
the Heisenberg action. The Heisenberg action is “defined over Q” in the sense that it
comes from a homomorphism of group schemes over Q:

Z/3Z× µ3 → Aut(P2),

where Aut(P2) is the Q-group scheme of automorphisms of P2. Equivalently, the Heisen-
berg action comes from a GQ-equivariant homomorphism of groups with GQ-action:

Z/3Z× µ3(Q̄) → AutQ̄(P2),

where AutQ̄(P2) is the group of automorphisms of P2 defined over Q̄.
The (nine point) locus of zeroes in P2 of the ideal

(XY Z,X3 + Y 3 + Z3)

is an orbit of the Heisenberg action. Any elliptic curve F in the family S passes through
this orbit of nine points, and has the property that it is preserved by the Heisenberg action,
this action being identified with translation by F [3].

Much of our work will be to construct twists of this situation. Many of the twists
that we will be considering admit alternate descriptions as pencils of cubic curves in P2

passing through some specified K-rational orbit (call it T ) of a twist of the Heisenberg
action. If we were to seek explicit equations to describe them, it would be natural to
look for the equations F(X, Y, Z) = 0 and G(X,Y, Z) = 0 of two distinct members of this
pencil, thereby exhibiting the orbit T in question as a complete intersection (by curves
stabilized under the Heisenberg action). At the same time one would be exhibiting the
corresponding twist of S as the locus in P1×P2 of the equation s′ ·F = t′ ·G, where (s′, t′)
are homogeneous coordinates for the parameter curve (P1) of the pencil.

The first twist: description in terms of twisting 1-cocyles. Here we fix a number
field K ⊂ Q̄ and an elliptic curve E defined over K. For concreteness, by the “auto-
morphism group” Aut(E [3]) let us mean the group of automorphisms of the abelian group
E [3](Q̄) of Q̄-rational points in E [3], but we view Aut(E [3]) with the natural GK-action on it
that it inherits induced by the standard Galois action of GK on Q̄. Alternatively, we might
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view Aut(E [3]) as the automorphism group of the finite étale (commutative) group scheme
E [3] over Spec K, where Aut(E [3]) is itself viewed as finite étale (noncommutative) group
scheme over Spec K. We let Auto(E [3]) ⊂ Aut(E [3]) denote the subgroup (of index two)
of automorphisms whose determinant is 1. As an abstract group (the group of Q̄-valued
points of) Aut(E [3]) is isomorphic to GL2(F3), and the subgroup Auto(E [3]) ⊂ Aut(E [3])
is isomorphic to SL2(F3) ⊂ GL2(F3); a specific isomorphism is obtained by choosing an
F3-basis of the 2-dimensional F3-vector space, E [3].

In the case where we have an identification ι : E [3]) ∼= Z/3Z × µ3 our choice of basis
{P1, Qζ} of Z/3Z× µ3 gives us such isomorphisms:

Aut0(Z/3Z× µ3) ∼= SL2(F3), Aut(Z/3Z× µ3) ∼= GL2(F3).

To pin down this choice of basis, {P1, Qζ}, of course, we must specify ζ = ζ3, a primitive
cube root of unity; for convenience of notation (alone) we make such a specification and we
will allow ourselves the identification of Aut(Z/3Z×µ3) with GL2(F3) and of Auto(Z/3Z×
µ3) with SL2(F3) below, with the understanding that via these identifications, the groups
GL2(F3) and SL2(F3) are equipped with a natural (continuous) GK-actions, where the
elements of GK act as group-automorphisms.

The group Auto(Z/3Z × µ3) (∼= SL2(F3) ) acts on the varieties (S, X(3), S̃) in the
natural way. Explicitly, if γ ∈ Auto(Z/3Z×µ3) and {F, α : Z/3Z×µ3 → F [3]} represents
a point of X(3) then γ · {F, α} = {F, γ · α}, and similary, if {F, α, P} represents a point
of S, we have γ · {F, α, P} = {F, γ · α, P}. The action of Auto(Z/3Z× µ3) on S stabilizes
the set C of exceptional curves for the blow-down to S̃ and therefore induces an action on
S̃. The mappings S → X(3) and S → S̃ are equivariant with respect to these actions.
We will be describing continuous 1-cocycles on GK with values in Auto(Z/3Z× µ3) with
respect to which we will be twisting the above varieties to obtain varieties

( S(E), X(E), S̃(E), )

over K and mappings
S(E) → X(E), S(E) → S̃(E),

(again over K). We are denoting our twisted configuration ( S(E), X(E), S̃(E), ) even
though it depends only on E [3]. For a brief treatment of the basic results regarding twisting
algebraic varieties by 1-cocycles, see Ch. V, section 4, para. 20 of [Se 1], and for a fuller
account, see [Se 2], especially Prop. 5 of section 1.3 of Ch. III there. For definiteness we will
be identifying the algebraic closures K̄ with Q̄, or equivalently, setting GQ := Gal(Q̄/Q),
we are thinking of GK ⊂ GQ as the subgroup fixing the subfield K. Let ro : GQ → GL2(F3)
denote the homomorphism with image equal to diagonal matrices, and which is of the form
ro : g 7→ [1, χ(g)] where χ : GQ → {±1} is the character giving the action of Galois on
cube roots of unity. Let rE : GK → GL2(F3) be a continuous homomorphism which is
equivalent (under GL2(F3)-conjugation) to the representation of Galois on E [3]. Define
the 1-cocycle (on GK with values in the non-commutative group GL2(F3)):

c : GK → GL2(F3)
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by c(g) := rE(g) · r−1
o (g) for all g ∈ GK . Since both determinants of rE(g) and of ro(g) are

equal to χ(g), the 1-cocycle c takes its values in SL2(F3) ⊂ GL2(F3) and we will regard
c, therefore, as a 1-cocycle on GK with values in the (nonabelian) group SL2(F3). Given
the natural action of SL2(F3) on our three varieties (S, X(3), S̃) over Q̄ we may obtain
(via composition of the 1-cocycle c with the natural homomorphism of SL2(F3) to the
automorphism groups of the three varieties in question) three 1-cocycles,

cS,E ∈ Z1( GK ,AutQ̄(SQ̄) ),

cX(3),E ∈ Z1(GK , AutQ̄(X(3)Q̄) ),

and
cS̃,E ∈ Z1(GK , AutQ̄(S̃Q̄) ),

where if M is a continuous (possibly non-commutative) GK-module, Z1(GK ,M) refers
to the group of continuous 1-cocyles on GK with values in M . Twisting S and S by
the 1-cocycle cS,E and the remaining two varieties (X(3), and S̃) by their corresponding
1-cocycles give us the varieties over K which we denoted S(E), S(E), X(E), S̃(E). The
isomorphism class of each of these varieties is dependent only on the cohomology class of
the corresponding twisting 1-cocycle.

The first twist: modular description. The modular interpretation of these varieties is
as follows: The K-variety S̃(E) represents the functor associated to the “moduli problem”
of classifying isomorphism classes of triples {F, α : E [3] ∼= F [3], P} where F is an elliptic
curve (or “generalized elliptic curve”) over a base K-scheme W , α is an isomorphism of
determinant 1 of group schemes over W , where by “F [3]” above we have meant the K-
group scheme F [3] pulled back to W , and P is a W -valued section of the generalized
elliptic curve F . The K-variety X(E) represents the functor associated to the “moduli
problem” of classifying isomorphism classes of couples {F, α : E [3] ∼= F [3]} where the
mapping S(E) → X(E) is given by dropping the “third” piece of data (P ). The K-variety
S(E) is given as the evident completion of S(E) and the K-variety S̃(E) may be thought
of as obtained from S(E) by noting that the twisting 1-cocyle preserves the set of the nine
sections C ⊂ S yielding a K-rational packet (call it C(E)) which is a (K-rational) multi-
section of S(E) → X(E). Therefore we can (K-equivariantly) blow this down in S(E) to
obtain S̃(E).

Perhaps we should pause to take stock of what we have so far. The curve X(E) is a
curve of genus 0 over K. Since X(E) possesses a K-rational point (given by our “starting
curve” E) we have X(E) ∼= P1 over K. The quasi-projective surface S(E) is a generalized
elliptic curve over X(E) whose kernel of multiplication by 3 is “constantly” E [3], meaning
that, as a group scheme over X(E) it is the pullback of the K-group scheme E [3]. The
projective surface S̃(E) is a twist of P2, i.e., is a Brauer-Severi variety over K. Since S(E)
has a K-rational point so does S̃(E) and therefore we see that S̃(E) is isomorphic over K
to P2. Going back to S(E) we then have that S(E) is the blow-up of a certain K-rational
0-cycle (of degree 9) in P2.
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The second twist. At this point we wish to give ourselves an extra piece of data. We
keep the number field K and the elliptic curve E over K, but add to our initial data a
cohomology class h ∈ H1(GK , E [3]). We wish to use the class h to twist our varieties

S(E), S(E), X(E), S̃(E)

to obtain varieties
S(E , h), S(E , h), X(E), S̃(E , h)

over K admitting mappings

S(E , h) ⊂ S(E , h) → X(E), S(E , h) → S̃(E , h),

again over K.

Here (as the notation above already indicates) the K-variety X(E) will be unperturbed
by this second twist. There will be three ways to describe this twist. The first is, as
before, in terms of the twisting 1-cocycle. Note that the K-group scheme E [3] acts on
S(E) ⊂ S(E) by translation, and therefore we have an imbedding E [3]) ⊂ Aut(S(E)) (and
E [3]) ⊂ Aut(S(E))) these imbeddings being imbeddings of GK-groups. The cohomology
class h induces classes in H1( GK ,AutQ̄(S(E)) ) and in H1( GK , AutQ̄(S(E)) ) which we
use to twist S(E) and S(E) respectively, to give us the K-varieties S(E , h) and S(E , h).
Since the action of E [3] (by translation) preserves the projection to X(E) we have an
induced projection S(E , h) → X(E). Since the action preserves the subvariety C(E) ⊂ S(E)
we have, after twist by h, a K-rational multisection (of degree 9) of S(E , h) → X(E)
obtained by the twist of C(E) which we may denote C(E , h). We may again blow C(E , h)
down K-equivariantly in S(E , h) to obtain a variety which we denote S̃(E , h).

Here is a second way of thinking of this twist. The quasi-projective variety S(E) is
a generalized elliptic curve over the base X(E) and S(E , h) is simply an S(E)-torsor over
X(E) classified by the image of the class h under the composition

H1( GK , E [3]) → H1(X(E), E [3])X(E)) ∼= H1(X(E),S(E)[3]) → H1(X(E),S(E)).

The third way of describing this twist is to give the “moduli problem” that it represents.
Here I will only give the briefest indication: consider isomorphism classes of quadruples

{F, α : E [3] ∼= F [3], Th, P},

where F is a generalized elliptic curve over a K-scheme W , α is as before, Th is an F -torsor
representing the cohomology class ι·α·j(h) ∈ H1(W,F ) where ι : H1(W,F [3]) → H1(W,F )
and j : H1(GK , E [3]) → H1(W, E [3]) are the natural mappings, and P is a section of Th

over W . To give a more precise description one should say explicitly what one means here
by isomorphism classes, but I will omit this. In particular, a (noncuspidal) K-rational
point of S(E , h) will give us an elliptic curve F over K with a given 3-congruence to E
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(over K) such that the F -torsor classified by the cohomology class induced from h is trivial
over K.

Now suppose that the cohomology class h ∈ H1(GK , E [3]) lies in the Selmer group of
E . If this is the case, the E-torsor obtained in the natural way from the class h is trivial
over every completion Kv of K. It follows that S(E , h) and therefore also S̃(E , h) has
a Kv-rational point for every completion Kv of K. But since S̃(E , h) is a Brauer-Severi
variety, it follows that S̃(E , h) has, in fact, a K-rational point, and therefore is trivial. We
conclude

Lemma. If h ∈ H1(GK , E [3]) lies in the Selmer group of E , then S̃(E , h) ∼= P2 over K.

It follows from the above Lemma that, under the above hypothesis, S(E , h) likewise
has a dense set of K-rational points (Zariski-dense, as well as dense in the Σ-adic topology,
for Σ any finite set of places of K). We should note that to prove the proposition stated
earlier, all we really needed was that the variety S(E , h) satisfy the Hasse principle. But,
since we have that S̃(E , h) ∼= P2 over K, we can even assert:

Corollary 1. Given any number field K, elliptic curve E over K and class h ∈
H1(GK , E [3]) in the Selmer subgroup of E over K, there is a countably infinite set of
elliptic curves F over K with distinct j-invariants having the property that F satisfies
a 3-congruence over K with E and the F -torsor obtained from h by transport via the
3-congruence is trivial.

Our proposition immediately follows from this corollary. It seems worthwhile to record
a few “extras” that one gets from this construction.

Corollary 2. Under the hypotheses of Corollary let us assume that the class h is
nontrivial, and that the Mordell-Weil group E(K) contains no nontrivial 3-torsion. Then
π : S(E , h) → X(E) is an elliptic pencil over K with the following properties.

a. The pencil has no K-rational sections and has only a finite number of C-rational
sections.

b. The set of K-rational points of the domain S(E , h) of the pencil is dense (Zariski
dense, as well as dense in the Σ-adic topology, for Σ any finite set of places of K).

c. Any nonsingular fiber of π which contains a K-rational point, contains an infinite
number of K-rational points.

Proof. It is only the last property listed (i.e., c. ) that needs proof, the rest having been
either previously proved, or at least mentioned. Let e be a K-rational point of S(E , h) and
let T ⊂ S(E , h) be the fiber of π containing e. Then e is represented by a quadruple

{F, α, Th, P}

over K and if e doesn’t lie over a cusp of X(E) we have that F is an elliptic curve over
K. The elliptic curve F satisfies a 3-congruence to E such that the induced F -torsor Th
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is trivial (all this being over K). The fiber T in question is isomorphic over K to Th,
and therefore to the elliptic curve F . Let us consider, then, the portion of the Galois
cohomology exact sequence coming from multiplication by 3 on F :

F (K)/3F (K) → H1(GK , F [3]) → H1(GK , F ).

Since the second homomorphism is not injective, we see that F (K)/3F (K) doesn’t vanish.
But F has no nontrivial K-rational 3-torsion (since E has none, and E [3] ∼= F [3] over K).
It follows that F (K) is of positive rank; i.e., T has an infinity of K-rational points.

4. Some afterthoughts.

a. Let us return to the context of Corollary 1, and consider the pencil of elliptic curves
π : S(E , h) → X(E) (where h ∈ H1(GK , E [3]) is in the Selmer subgroup of E over K).
Then the domain of π is a blow-up of P2, and the range of π is P1, and so π determines
a K-isomorphism class of birational mappings of P2 to P1. Let us (partially) normalize
the identification X(E) ∼= P1 by letting ∞ ∈ P1 correspond to the “base point” in X(E);
i.e., the point representing the starting elliptic curve E . As promised in our digression
regarding the Heisenberg action above, the mapping π is easily seen to be given by some
rational function of the form

F(X, Y, Z)/G(X, Y, Z)

where F and G are homogenous forms of degree 3. Here G(X, Y, Z) is a cubic form cutting
out (in P2) the curve of genus 1 corresponding to the element σ ∈ Sha(E/K) which is
induced from the cohomology class h. We therefore find (surprise!) that in order to
systematically understand all visualizations of a given element of Sha in abelian surfaces,
we are again back to the problem of visualizing elements of order 3 in Sha as the locus
of zeroes of cubic forms in P2 (and this just to get a cubic form that plays the role of
G; we would have yet more work to do to get F). An example for j = 0 which one can
think through to illustrate the interplay (between the problems presented by representing
an element of order three of the Shafarevich-Tate group in P2 and in abelian surfaces) is
given by the equations

s(3X3 + 4Y 3 + 5Z3) = t(XY Z).

Returning to the general case, to give an explicit description of π (and, along with
π, a complete description of the collection of elliptic curves F whose Mordell-Weil groups
explain the element σ in the Shafarevich-Tate group of E coming from the cohomology
class h) one should (once given K, E and h) find some way to provide homogenous forms
F(X,Y, Z) and G(X, Y, Z) that do the above job. It might be interesting to produce a
(usable) computer algorithm that does this.

b. Given K, E , and an element σ of order 3 in Sha(E/K), Corollary 1 guarantees an
infinity of elliptic curves F over K which (are 3-congruent to E and ) have elements in their
Mordell-Weil groups K which explain σ. The striking thing, though, that is exhibited by
the data (that of Logan and the extended tables in [C-M]) is the profusion of cases where
there is such an elliptic curve F of the same conductor as E . Our result here gives us no
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further understanding about why such F ’s should exist so often. It would, of course, be
very interesting (but probably too optimistic to hope for) if one could produce a number
N , computable simply from the original data of the problem, for which one can prove the
existence of such an F with conductor < N .

c. All the entries in the tables of [C-M] have the property that their Shafarevich-Tate
groups have exponent ≤ 7. Moreover, there is only one entry with Shafarevich-Tate group
of exponent > 5, and its Shafarevich-Tate group (of order 49) is one of the few which are
not, in fact, visualizable in an abelian surfaces in the new part of the modular jacobian (of
the same conductor as the elliptic curve in question). So the puzzle in our data concerns
elements of Shafarevich-Tate groups of orders 2,3,4, and 5. Can one provide an analysis
similar to our treatment of elements of order 3, which deals with elements of orders 2,4,
and 5?

d. So far, we have twice twisted the basic “Hessian” universal elliptic curve with level
3-structure. We can produce an even more elaborate twisting of the fiber-square of this
universal elliptic curve over X(3). Briefly, let us give ourselves the data of a number field
K, an elliptic curve E over K, and two elements h1, h2 ∈ H1(GK , E [3]). We omit the
details of the construction, but note that there is a projective threefold V (E , h1, h2) over
K representing the moduli problem of giving sextuples

{F, α, Th1 , Th2 , P1, P2}

where Thi is an F -torsor classified by hi and Pi is a point on Thi (for i = 1, 2). There are
natural projections V (E , h1, h2) → S(E , h1) and V (E , h1, h2) → S(E , h2) which, in both
cases, have their generic fibers curves of genus 1. If E has no nontrivial K-rational point
of order 3, and if the elements h1, h2 ∈ H1(GK , E [3]) are linearly independent over F3 and
are both elements of the Selmer group of E then V (E , h1, h2) is a family of elliptic curves
(i.e., the generic fiber is a curve of genus 1) over P2 and has the property that if a fiber T
has a K-rational point, then it is isomorphic over K to an elliptic curve with Mordell-Weil
rank ≥ 2. It would be interesting to study some specific examples of these in detail. Can
one find such an example for which the total space has a Zariski-dense set of K-rational
points?

e. Returning to the family π : S(E , h) → X(E) where h represents an element in the
Selmer group of E , so that S(E , h) is a blow up of P2 and X(E) = P1 over K. For
x ∈ X(E)(K) = P1(K) denote by h(x) the (normalized, logarithmic) height of x, and
denote by Tx ⊂ S(E , h) the fiber over x. I am thankful to Yuri Tschinkel and Bjorn Poonen
for conversations about these examples, and in particular, for their comments suggesting
that it would be interesting to get some idea of the asymptotics of these functions of a real
variable T :

r(T ) = #{x ∈ X(E)(K) = P1(K) | h(x) ≤ T and Tx(K) nonempty},
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and

r′(T ) = #{x ∈ X(E)(K) = P1(K) | h(x) ≤ T and Tx(Kv) nonempty for all places v}.
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[Se 1] Serre, J.-P.: Groupes algébriques et corps de classes, Hermann, Paris (1959)
[Se 2] Serre, J.-P.: Cohomologie Galoisienne (fifth ed.) Lecture Notes in Mathematics

5 Springer (reprinted: 1994)
[Sh] Shioda, T.: On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972) 20-59

14


