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Introduction. Two basic arithmetic invariants of an elliptic curve E over a number
field K are:

the Mordell-Weil group E(K) – whose elements are the K-rational points of E,

and

the Shafarevich-Tate group X(E/K) – whose elements are defined to be isomorphism
classes of pairs (T , ι) where T is a smooth projective curve of genus 1 over K possessing
a Kv-rational point for every place v of K (where Kv is the completion of K at v), and
where ι : E → jac T is an isomorphism over K between E and the jacobian of T .

As is well known, E(K) and X(E/K) are somehow linked in the sense that it is often
easier to come by information about the Selmer group of E over K which is built out of both
E(K) and X(E/K) than it is to get information about either of these groups separately.
It occurred to us that, although these two groups (Mordell-Weil and X) are partners,
so to speak, in the arithmetic analysis of the elliptic curve E, there seems to be a slight
discrepancy in their treatment in the existent mathematical literature, for this literature
does a much more thorough job of helping one (at least in specific instances) to compute
rational points, i.e., to exhibit elements of Mordell-Weil, than it does in helping one to find
(in an explicit way) the curves of genus one which represent elements of X (especially if
one is interested in elements of X of order > 2). This is perhaps understandable in that it
is usually quite clear how to present a rational point (e.g., if E is given in Weierstrass form,
giving just its x-coordinate determines the rational point up to sign) but it is less clear
what manner one should choose to exhibit the curves of genus 1 representing the elements
of X. Of course (for a fixed integer n) an element in X annihilated by multiplication by n
can always be obtained by push-out, starting with an appropriate 1-cocycle on the Galois
group GK = Gal(K/K) with coefficients in the finite Galois module E[n] ⊂ E, the kernel
of multiplication by n in E, (the 1-cocycle being unramified outside the primes dividing
n and the places of bad reduction for E) and so therefore, there is indeed, a “finitistic”
way of representing these elements of X. Our aim here is rather to develop strategies
that might enable us to “visualize” the underlying curves more concretely. There are, for
example, two standard ways of representing elements of X, both of which we will briefly
review below, and we will also suggest a third (where the curves of genus 1 in question
are sought as subcurves of abelian varieties). It is this third mode of visualizing elements
of the Shafarevich-Tate group together with data regarding it (See Tables 1 and 2 below)
that is the principal theme of our article.

The data we tabulate strikes us as surprising, and as deserving of some explanation.
However, we have no hypothesis to offer that would explain it, and therefore our article is
not genuinely experimental in the classical sense (despite the name of the journal in which
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it appears), since experiments are usually expected to be the testing-grounds of explicitly
articulated hypotheses.

Explicit equations for curves of genus 1 and for their jacobians, together with results re-
garding visibility and related matters are to be the subject of a Winter School at the Univer-
sity of Arizona in March 1999. See http://www.math.arizona.edu/~swcenter/aws99/
for more details.

We are deeply grateful to A. Agashé, N. Elkies, J. de Jong, A. Logan, L. Merel, W.
McCallum, C. O’Neil, N. Shepherd-Baron, and R. Taylor for comments, computations,
explanations of the classical literature, and conversation, regarding this topic.

Finally, both authors would like to extend their warmest best wishes in his retirement
year to Bryan Birch, to whom they owe so much.

1. Elements of X(E/K) represented as étale coverings of E.

Let n be a positive integer. Given T a curve of genus 1 over K with a specific
identification of its jacobian with E, there is a natural action of E on T which allows us to
view T as a principal homogeneous space (equivalent terminology: torsor) for E over K.
If T represents an element of order n in X(E/K) (or more generally, an element of the
“Weil-Châtelet” group WC(E/K) ∼= H1(GK , E), of isomorphism classes of E-torsors over
K) the quotient of T under the action of the finite subgroup E[n] ⊂ E has a K-rational
point, and is therefore K-isomorphic to E. That is, we may view T as an étale finite
covering of E, of degree n2.

2. Elements of X(E/K) represented as curves of degree n in projective
(n− 1)-space.

Now let us give ourselves T , a curve of genus 1 over K, with an identification of its
jacobian with E, representing an element σ of order n > 1 in X(E/K), and note that
for any integer k ∈ Z the curve T k := Pick(T ) of linear equivalence classes of divisors of
degree k on T is again a torsor for E over K representing the element k · σ ∈ X(E/K).
In particular, since Tn ∼= E (over K) we see that there exists a linear equivalence class of
divisors of degree n on T which is K-rational. Choose such a K-rational divisor class D,
and consider the (Chow) variety V (over K) consisting of divisors on T which are in the
linear equivalence class D. Over K the variety V is a projective space, and V is therefore
a (Brauer-Severi) twist of projective space over K. But since σ ∈ X(E/K), it follows
that V has a Kv-rational point for all completions Kv of K and therefore, by Global Class
Field Theory (more specifically, by the Hasse Principle for Brauer-Severi varieties) V has
a K-rational point; i.e., there is a K-rational divisor on T of degree n. Choose such a
divisor D, and consider the mapping (of degree n) rD of T to the (n − 1)-dimensional
projective space Pn−1 := P(H0(T,O(D))), defined (over K) by the linear system of D.
This representation of T is independent of the rational divisor D chosen, in the sense that
given another choice, D′, the representation rD′ may be obtained from rD by composition
of appropriate K-isomorphisms of domain and range. We might remark that this method
of representing elements of X, in contrast with the first method we described, works as
formulated specifically for elements of the Shafarevich-Tate group but if one were to try to
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extend it to a method of describing curves T representing elements of order n in the larger
Weil-Châtelet group one would be required, in general, to replace the ambient projective
(n− 1)-space by an appropriate Brauer-Severi variety of dimension n− 1 over K.

Returning to the case at hand, i.e., representing elements of X, when n = 2 the above
method represents T as double cover of P1. When n ≥ 3 we get T as a curve, defined
over K, of degree n in Pn−1. In particular, when n = 3, T is represented, in this way,
as a plane cubic. There is a large body of classical literature (but, nevertheless, many
still-open problems) regarding this case and the case n = 4; we will review some of this
literature below. When n = 4, T is represented as a curve of degree 4 in P3 which is
also the subject of significant classical work (the legacy of Jacobi). Also in more recent
times, the legacy of Jacobi has been expressed in terms of the theory of theta functions
via the Heisenberg representation [Mum]. If appropriately developed, this approach might
yield, we believe, a fine format for presenting the equations of curves of degree n in Pn−1

representing elements of X.

The case n = 3. By the height of a plane cubic over K (i.e., a cubic in the standard
projective plane, given with homogeneous coordinates X0, X1, X2) let us mean the loga-
rithmic height of the point in projective 9-space of the (ten) homogeneous coordinates of
the defining equation of the cubic. To get a notion of height which is independent of the
coordinatization of the projective plane, call the minimal height of a plane cubic over
K the greatest lower bound of these heights under projective general linear changes of the
homogeneous coordinates X0, X1, X2 defined over K; to actually compute this minimal
height would involve understanding the classical reduction theory regarding the symmet-
ric cube representation of GL3, and implementing algorithms for it. But given this, we
then have a well-defined notion of the minimal height h(σ) of an element σ of order 3
in X(E/K): one defines h(σ) to be the minimal height of a plane cubic representing σ.

Problem. When K = Q, find an upper bound as a function of N = conductor(E) for
the minimal heights of all elements of order 3 in X(E/Q).

Some literature and current work on the subject of explicit representation of
curves of genus 1 and their jacobians. In search of explicit formulas, there are two
directions in which it is important to go. One can start with a curve of genus 1, given
by an equation, or a system of equations, and ask for the equation(s) of its jacobian. Or,
and this is the more specific thrust of this article, one can try go the other way: given
an elliptic curve, and a Selmer class, find the explicit equations of the curve of genus 1
representing that class. There is a wealth of material which goes in the first direction (e.g.,
typical of such is the result of Cassels about plane diagonal cubics: for nonzero constants
a, b, c in a field of characteristic different from 3, the plane cubic curve whose equation is
aX3 + bY 3 + cZ3 = 0 has jacobian isomorphic to the locus of zeroes of X3 + Y 3 + abcZ3).
For the jacobian of curves of genus 1 where the curves are of order n in their Weil-Châtelet
groups and for the equations of the n-fold map to the jacobian, see [W] or [Cr2] for n = 2,
[Sa1] for n = 3, and, when n = 4 and we have given the curve in question as an intersection
of two quadrics in P3, see [Sa 2] or [MSS]. For the formulas for the jacobians of curves of
genus 1 given as hypersurfaces of bihomogenous degree (2, 2) in P1 ×P1 see the Harvard
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Ph.D. thesis (presently being written) of Catherine O’Neil who has found families C2, C3,
and C5 of curves of genus one in P1 × P1,P2, and P4 respectively such that (1) A map
Ci −→ jac(Ci) is explicitly written as a linear automorphism of the ambient projective
space, and (2) every curve of genus one over a field F of characteristic 0 embeddable over
F in one of the projective or multi-projective spaces above, and whose jacobian has a
subgroup of i-torsion isomorphic (over F ) to µi is a member of Ci.

The general formula in the cases n ≤ 4 is the subject of a paper [A-H-K-K-M-M-P]
being presently written by McCallum, Minhyong Kim and some of the graduate students
at the University of Arizona (Sang Yook An, Susan Hammond, Seog Young Kim, David
Marshall, and Alex Perlis).

For n = 5, as Nicholas Shepherd-Baron pointed out to one of us, the equations for a
smooth curve of genus 1 of degree 5 in P4 can be given as the determinants of minors of
a 5 × 5 Pfaffian matrix. The search for elliptic curves over Q with large 5-Selmer group
is the subject of current work being done by Tom Fisher, a student of Shepherd-Baron,
who does this by writing down genus 1 curves of degree 5 in P4, with an action of µ5, the
corresponding jacobians being the quotients of these by µ5.

There are fewer results of an explicit nature going the “other way”. Available numer-
ical data (e.g., listings of equations of minimal height representing the elements of order 3
in the Shafarevich-Tate groups of elliptic curves of low conductor) is still fragmentary at
best.

3. Elements of X(E/K) represented as curves in abelian varieties.

Let σ be an element in WC(E/K) ∼= H1(GK , E), the Weil-Châtelet group of isomor-
phism classes of torsors for E over K. Suppose that we are given an embedding over K of
E into an abelian variety J . Form the exact sequence of abelian varieties

(∗) 0 → E → J → B → 0.

Definition. Let us say that σ is visible in J if σ is in the kernel of the natural
homomorphism

WC(E/K) → WC(J/K).

Remark 1. The element σ is visible in J if and only if there is an element β ∈ B(K)
such that σ is represented by a curve T of genus 1 defined over K contained in the variety
J and such that T is the inverse image of the point β ∈ B under the projection J → B.
Equivalently, T is a translation of E by a point P ∈ J(K), the point P projecting to β
under the natural mapping J → B. Thus

T := E + P ⊂ J.

(Of course, if σ 6= 0, the point P is not rational over K despite the fact that the translate
E + P is defined over K.)
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Proof. This follows immediately upon consideration of the exact sequence (*) and the
induced long exact sequence of GK-cohomology:

J(K) → B(K) → H1(GK , E) → H1(GK , J).

Definition. If the above situation occurs, we shall say that the element σ is explained
by the element β ∈ B(K) of the Mordell-Weil group of B, noting that the element β
playing the role required in the statement of the theorem is uniquely determined modulo
the image of J(K) in B(K).

Since the curve T representing σ is the inverse image of an element β ∈ B(K) explain-
ing σ, the size of the coefficients of the equations for T , as, say, a curve in some projective
space, is bounded by data coming from a choice of projective embedding of J , the nature
of the projection mapping J → B, and, finally, the height of the point β.

Remark 2. Suppose that our elliptic curve E does not have complex multiplication by√−1 or
√−3, and we have an embedding of E into an abelian variety J (over K) such

that there are no nontrivial homomorphisms of E to B = J/E over K. Then an element
σ ∈ WC(E/K) is visible in J if and only if the curve T of genus 1 (over K) representing
σ is isomorphic over K to a curve contained in the variety J .

Proof. By Remark 1, if σ is visible in J , then T occurs as a subvariety (in fact, it is a
translate of E) in J . Suppose that T is isomorphic to a subvariety T ′ ⊂ J . The projection
J → B must be constant when restricted to T ′, for T ′ is isomorphic over K to E and, by
assumption, there are no nonconstant maps from E to B over K. So T ′ is a translate of E.
We must show that the structure that T ′ inherits from T as torsor over E coincides, up to
sign, with the E-torsor structure on T ′ given by addition (in J). But by our assumption
on E, we have that the only automorphisms of E are the scalar multiplications by ±1,
and therefore, up to sign, there is only one E-torsor structure on T ′, which concludes the
proof of this remark.

Remark 3. As Johan de Jong explained to one of us (in the Castle pub on Castle Hill
in Cambridge, England), for any element σ ∈ WC(E/K) there is some abelian variety
J over K containing E as abelian subvariety, such that σ is visible in J . One can see
this as follows. Let n be the order of σ, and represent σ as an Azumaya algebra AF of
rank n2 over the field F of rational functions on the K-variety E. There is a maximal
commutative sub-algebra L in A of rank n over F such that, if π : C → E is the mapping
of degree n of projective smooth curves associated to the field extension L/F , then π is
totally ramified at (at least) one point of E. It follows that the associated morphism of
jacobians E = JE → JC is injective. Moreover, by construction, the induced Azumaya
algebra AL = AF ⊗F L splits; i.e. σ is visible in JC . Here are the details:

Proposition. Let K be a number field, E an elliptic curve over K and σ ∈ WC(E/K).
Then there is some abelian variety J over K containing E as abelian subvariety, such that
σ is visible in J .
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Proof. Consider the natural homomorphism

H1(K, E) →
∐
v

H1(Kv, E)

where v runs through all non-archimedean places of K, and where Kv is the completion
of K at v. Let V denote the finite set of these places which have the property that the
element σ ∈ H1(K, E) does not go to zero under the mapping H1(K, E) → H1(Kv, E).
To have a nice geometric model to work with, let O = OK [1/m] ⊂ K be a Dedekind
subdomain of the ring of integers OK of K where we have inverted the non-zero integer
m; the integer m is assumed to be divisible by all primes of bad reduction for E and
by the residual characteristics of all v ∈ V and by the order of σ. It follows that the
cohomology class σ comes by restriction from a class (which we denote by the same letter)
σ ∈ H1(Spec O, E), where f : E → Spec O is the Néron model of E/K over the base
Spec O, and the cohomology in question is étale cohomology. Alternatively, we may view
σ as an element of the kernel of

H1(K, E) →
∐

v 6=V
H1(Kv, E);

i.e., the group denoted X (V, A) in section 3 of [T] for V = O and A = E . We may apply
Theorem 3.1 of [T] to the proper morphism f : E → Spec O (its fibers are of dimension 1
and E is regular of dimension 2) to get the exact sequence

0 → Br (Spec (O)) → Br (E) →X (O, E) → 0.

By surjectivity of Br (E) → X (E), we may (and do) choose an element ξ in the Brauer
group of E which projects to σ. We now “shrink” Spec (O) further, so as to guarantee that
the order (call it N) of the element ξ is not divisible by any of the residual characteristics of
Spec (O), and therefore ξ is the image of some element η ∈ H2(E , µN ) under the mapping

H2(E , µN ) → H2(E ,Gm) = Br (E).

Now let us modify our choice of lifting ξ. Let Ê denote the completion of (the abelian
scheme) E along its zero-section, and let

z : Spec (O) ↪→ Ê
denote that zero-section. Let η̂ ∈ H2(Ê , µN ) be the pullback of the cohomology class η to
Ê . The morphism z above induces an isomorphism on étale cohomology,

z : H2(Ê , µN ) ∼= H2(Spec (O), µN ),

and let let us denote by ηo ∈ H2(Spec (O), µN ) the image of η̂ under the isomorphism
z. Let ξo ∈ H2(Spec (O),Gm) = Br(Spec (O)) be the image of ηo under the mapping
H2(Spec (O), µN ) → H2(Spec (O),Gm). Put

ξ′ := ξ − ( the image of ξo in Br(E)).
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Then ξ′ is also a lifting of σ, but has the added property that its pullback to Br (Ê)
vanishes. Let n denote its order, and let AE denote an Azumaya algebra of rank n2 over
E representing ξ′. Such an Azumaya algebra exists by Corollary 2.2 of [Groth]. Moreover,
the Azumaya algebra AÊ is a “trivial” Azumaya algebra over Ê .

We now retract to the associated function fields: let F denote the field of rational
functions on the K-variety E which we view as a discretely valued field, with the valuation
given by the order of zero (or pole) at the origin of the elliptic curve E. Let Fo denote the
completion of F with respect to this valuation. Thus, Fo

∼= K((t)) is isomorphic to the
field of Laurent power series in a uniformizer t. Let AF be the central simple algebra (of
rank n2) over F which is obtained by change of scalars from the Azumaya algebra AÊ .
We have that the central simple algebra AFo

obtained from AF by base change is trivial;
i.e. is a total matrix algebra Matn(Fo) of all n× n matrices with entries in Fo

∼= K((t))).
Here is how we may view this total matrix algebra. Identifying Fo with K((t)), let Lo/Fo

be the totally ramified extension of degree n given by Lo := K((s)) where sn = t; i.e.,
Lo := K((t1/n)). Viewing Lo as (n-dimensional) vector space over Fo, we may find an
isomorphism, then, between Fo-algebras:

AFo
∼= EndFo (Lo) ∼= Matn(Fo),

and since Lo is a maximal commutative algebra (of rank n) in EndFo (Lo), its action on
the Fo-vector space given by multiplication, so we have an imbedding of Lo into AFo .

Our next task is to approximate the uniformizer

s ∈ Lo ⊂ AFo

by an element s′ ∈ AF . Since AF is dense in the topological vector space AFo , given any
positive integer ν, we can find such an element s′ with the property that

s′ − s = tν · w ∈ AFo
∼= Matn(K((t))),

where w ∈ Matn(K[[t]]). If ν is taken large enough, we get that the characteristic polyno-
mial for the action of s′ is a monic polynomial of degree n which is congruent modulo a high
power of t to the polynomial Xn − t, and therefore s′ generates a maximal commutative
subfield L of AF (an extension of F of degree n) which is totally ramified over Fo.

We now have only to repeat the brief sketch given immediately before the statement
of this proposition. Namely, let C be the smooth projective curve whose field of rational
functions is L (i.e., the normalization of L over the K-scheme E) and note that since the
natural projection mapping C → E is totally ramified at the origin in E, it induces an
injection on jacobians 0 → E → J := jac(C) and, moreover we see, by the construction
of C, that the Azumaya algebra A splits when pulled back to C. That is, σ is visible in
J = jac(C).

This construction, however, does not allow us easy viewing of the curves of genus 1
that are generated. To get a sharper image we are led to imposing very strong restrictions
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on the types of abelian varieties J that we wish to use, to visualize torsors over elliptic
curves. For the rest of this article, we concentrate in the question of visualizing elements of
X rather than the corresponding more general question for arbitrary E-torsors. Moreover,
we will be interested in five special situations.

1. The field K = Q, the elliptic curve E a abelian subvariety of J0(N) := jac(X0(N))
the jacobian of the modular curve X0(N) for some level N , and we want to know which
elements of X(E/Q) are visible in J0(N).

2. We are over any number field K and we want the elements of X visible in abelian
surfaces.

3. Same as 1 above, but considering only elliptic curves E ⊂ J0(N) where N is
specifically the conductor of E, and we want to know the elements of X visible in J0(N).

4. The combination of 1,2, 3 above. That is, we are over K = Q and are seeking
elements of X visible in abelian surfaces contained in J0(N) where N is the conductor of
E.

5. As in 4 above, but with one more specific requirement. We are dealing, as
in 4 with elliptic curves E over K = Q and are seeking elements of X(E/Q) visible in
abelian surfaces J ,

E ⊂ J ⊂ J0(N)

where N is the conductor of E, but also request that the complementary elliptic curve
A ⊂ J to E in the abelian surface J be of conductor N as well (equivalently: that J be
contained in the new part of J0(N)).

The reader might imagine that we are stacking the deck against ourselves by asking
for something as stringent as 5, but we are getting ahead of our story.

Visibility and congruence moduli. Let 0 → E → J → B → 0 be an exact sequence of
abelian varieties over K, where E is an elliptic curve. Denote by A ⊂ J a complementary
abelian variety to E in J , so that we have the exact sequence over K,

0 → A ∩ E → A⊕ E → J → 0,

with A∩E a finite subgroup of the abelian varieties A and E; we embed it “anti-”diagonally
in A⊕E. Let m be the exponent of the finite group (A∩E)(K). We can call the integer m
the congruence modulus of E and A in J . One immediately sees that if σ ∈X(E/K) is
visible in J then its order divides the congruence modulus m, and, more specifically, there
is an element h ∈ H1(GK , E ∩A) which maps to the element σ ∈X(E/K) ⊂ H1(GK , E)
under the homomorphism induced from the inclusion E ∩ A ↪→ E, and which maps to
zero in H1(GK , A) under the homomorphism induced from the inclusion E ∩A ↪→ A. The
set of elements of X(E/K) visible in J is a subgroup of X(E/K), and is a subgroup of
X(E/K)[m]. Denote the subgroup of elements of X(E/K) visible in J by

X(E/K)(J) ⊂X(E/K)[m] ⊂X(E/K).
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There is a converse to this description. Namely, let us give ourselves the following
data:

i. an abelian variety A over K,
ii. finite, GK-stable, subgroups ΦE ⊂ E and ΦA ⊂ A,
iii. and a GK-equivariant isomorphism ι : ΦE

∼= ΦA,

with the property that

a. σ ∈ X(E/K) ⊂ H1(GK , E) is the image of an element h ∈ H1(GK , ΦE), and
that

b. ι ·h ∈ H1(GK , ΦA) maps to zero in H1(GK , A) under the homomorphism induced
from the inclusion ΦA ↪→ A.

Then, forming J by requiring the sequence

0 → ΦE → A⊕ E → J → 0

to be exact, where we have embedded ΦE ↪→ A⊕ E by the injection ι ⊕−1, the element
σ is visible in J , A is a complementary abelian variety to E in J , and the congruence
modulus is the exponent of the finite group ΦE

∼= ΦA.
Referring to our list of cases above, Case 2. occurs when the abelian variety A is an

elliptic curve. Note, therefore, that one would expect there to be serious impediments to
finding visible elements of X of large order (for fixed K) in abelian surfaces. For example
we would not even expect to find pairs of non-isogenous elliptic curves E, A over Q with
Q-stable finite subgroups ΦE ⊂ E and ΦA ⊂ A which are GQ-equivariantly isomorphic
and are of large exponent m (let alone with the properties requisite for visibility).

Specifically, the first author has conducted a search for non-isogenous pairs of elliptic
curves E and A for which there are finite subgroups ΦE ⊂ E and ΦA ⊂ A which are
GQ-equivariantly isomorphic of exponent m. This search has so far covered all (modular)
elliptic curves of conductor N ≤ 5500 and all prime moduli m ≤ 97. It has yielded a large
number of examples for m ≤ 7, quite a number for m = 11, but has so far yielded only two
examples for m ≥ 13 , both of these being for m = 13. Namely, there is an elliptic curve
of conductor 988, labelled 988B1 in [Cr1], satisfying a 13-congruence (see below for the
definition of m-congruence) with the elliptic curve 52A1 of conductor 52; and the elliptic
curve 3952C1 satisfies a 13-congruence with the curve 208C1. Neither of these congruences
involve issues of visibility. These curves all have trivial X and rank 0, except for 988B1
which has rank 1.

This systematic search shows that there are no m-congruences for pairs of non-
isogenous (modular) elliptic curves of conductors both ≤ 5500, where m is a prime number
in the range 17 ≤ m ≤ 97. The question of “high congruences” satisfied by pairs of non-
isogenous elliptic curves is a topic of some current interest. See, for example, the work of
Kani and Schanz [K-S], and the Harvard PhD thesis of David Carlton [Ca].

Optimal (or “strong Weil”) modular elliptic curves. A natural case to consider
is where K = Q, and E is a modular elliptic curve over Q of conductor N , contained in
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the jacobian of the modular curve J = J0(N) := jac(X0(N)). The requirement that E be
contained in J0(N) is, in effect, the requirement that E be the optimal (or equivalently, in
somewhat older terminology, the “strong Weil”) elliptic curve in its Q-isogeny class. It is
equivalent to request that the modular parametrization

π : X0(N) → E

of smallest degree among all possible nonconstant mappings from X0(N) to E have the
property that the kernel of the homomorphism induced from π on jacobians, J0(N) → E,
be (geometrically) irreducible. By definition, the modular degree of E, denoted mE , is
the degree of the finite mapping π. Denoting its kernel A ⊂ J := J0(N), we have that A
is an abelian variety over K which fits into the exact sequence

0 → A → J → E → 0

whose dual we identify with
0 → E → J → B → 0.

The appropriate compositions of the mappings in the exact sequences above give us iso-
genies E → E and A → B, the first being multiplication by the modular degree, mE ,
from which we deduce that the (common) kernel of these isogenies is the finite subgroup
A ∩ E = E[mE ]. In particular, the congruence modulus of E and A in J is equal to the
modular degree of E.

In studying the Shafarevich-Tate groups of elliptic curves, the optimal curve is a good
choice of curve to concentrate on, in that, at least as far as most of the available numerical
data shows, the order of the Shafarevich-Tate group, if it varies at all within a given isogeny
class, will tend to be smallest for the optimal curve in the class. The phrase “will tend”
is perhaps a bit too weak to describe the state of affairs here: of the data so far analyzed
by the first author (going up to level 1000), there are only two counter-examples, both at
level 960, to the statement that the minimal order of the Shafarevich-Tate group is attained
by the optimal member of the Q-isogeny class of modular elliptic curves. The exceptions
are the isogeny classes 960D and 960N (in the labelling of [Cr1]), where the optimal curves
960D1 and 960N1 both have X of order 4, while in each case the three other curves in
the isogeny class have trivial X. (See [Cr3] for more details of this investigation.)

It would be interesting to determine whether these counter-examples remain “optimal”
when considered as quotients of X1(N), following the ideas regarding optimality suggested
by Glenn Stevens [St]. We have not yet answered this question, but we suspect that
the answer in each case is “yes”, for the following reason. Stevens proves in [St] that
each isogeny class of elliptic curves of conductor N over Q contains a unique curve whose
Faltings-Parshin height is minimal, or equivalently whose period lattice is strictly contained
in the period lattices of the other curves in the class. He also conjectures that the curve
of minimal height is always the X1(N)-optimal curve in the class, and proves (by explicit
computation) that this holds for N ≤ 200. For both the classes 960D and 960N , the
X0(N)-optimal curves have minimal height, so by Stevens’ conjecture one would expect
that they are also X1(N)-optimal.

10



In any event, once one knows the Shafarevich-Tate group of one member of a Q-
isogeny class of elliptic curves, it is often not that hard to work out the Shafarevich-Tate
group of any other member. In the above situation, denoting as above by B the quotient
abelian variety J/E, we have most of the hypothesis requested in Remark 2 above (that
there are no nontrivial homomorphisms from E to B) by the “multiplicity one” theorem.

Let us denote the subgroup of elements of the Shafarevich-Tate group of a modular
elliptic curve E of conductor N which are visible in the modular jacobian J = J0(N) with
a superscript o, so we have the inclusion of subgroups

X(E/Q)o ⊂X(E/Q)[mE ] ⊂X(E/Q),

and note also the evident fact that whenever the modular degree of E is prime to the order
of the torsion group of B(K), any σ ∈X(E/Q)o is “explained by” an element β ∈ B(K)
of infinite order.

The relation of m-congruence. Let E and F be elliptic curves over a field K, and
let m > 0 be a positive integer. We will say that E and F are m-congruent over K if
there exists an isomorphism E[m] ∼= F [m] as (Z/mZ)[GK ]-modules. Suppose E and F ,
now, are optimal elliptic curves over Q of the same conductor N and denote by

fE(q) = q + a2(E)q2 + a3(E)q3 + · · ·

the Fourier expansion of the cuspidal modular newform of weight two on Γ0(N) corre-
sponding to E, and by fF (q) the Fourier expansion of the newform corresponding to F .
The newforms fE and fF are eigenforms for the full Hecke algebra T = T0(N) which
acts faithfully on the space of cuspidal modular forms of weight two on Γ0(N) (and also
on the jacobian, J0(N), of the modular curve X0(N)) and which is generated by the Tl’s
for prime numbers l not dividing the level N together with the Uq’s for primes q dividing
N . Our elliptic curves E and F are both abelian subvarieties of the new part of J0(N).
To simplify our discussion, suppose that m = p is a prime number. Consider these five
conditions.

(1) The “prime to pN” Fourier coefficients of fE and fF “satisfy a p-congruence”,
i.e., an(E) ≡ an(F ) mod p for all n such that (n, pN) = 1.

(2) The GQ-representations E[p] and F [p] have isomorphic semisimplifications.

(3) The GQ-representations E[p] and F [p] are isomorphic (equivalently: E and F
are p-congruent).

(4) All the Fourier coefficients “satisfy a p-congruence”, i.e., an(E) ≡ an(F ) mod p
for all n.

(5) The finite subgroups E[p] and F [p] are equal in J0(N). That is, the abelian
subvarieties E ⊂ J0(N) and F ⊂ J0(N) have the property that their intersection contains
E[p] = F [p].

11



There are some evident implications between these five conditions. But also, (1)
and (2) are equivalent, and when the Galois representation E[p] is irreducible (or, what
amounts to the same thing, when E does not admit a rational p-isogeny) (1) (2), and (3)
are equivalent. Moreover, if N is relatively prime to p, p is odd, and E[p] irreducible, then
(4) and (5) are equivalent (by Theorem 5.2 of [R]). We also have the equivalence of (4)
and (5) when p divides N provided that p is odd, p2 doesn’t divide N , and the Galois
representation on E[p] is irreducible and not finite at p ([M-R]). The condition that E be
not finite at p is equivalent, if p2 does not divide N , to the requirement that ordp(∆E) not
be congruent to zero modulo p, where ∆E is the discriminant of E.

Let us refer to condition (5) as providing a modular p-congruence between E and
F . So, we have (at least) two possible notions: modular p-congruence, and (the a priori
weaker notion of) p-congruence.

There are two possible computational strategies for checking, for a given positive
integer m, that E[m] = F [m] (e.g., when m = p is a prime number, for checking a
“modular p-congruence” ).

First strategy: Computing m-congruences of period lattices. The better of the
two ways is to explicitly determine a basis for the integral homology of E and of F in
H1(X0(N);Z), and then to demonstrate that corresponding basis elements are linearly
dependent modulo m. This has the virtue of actually demonstrating that E[m] = F [m]. It
is by this method that we establish most of the modular p-congruences listed in our table,
using the modular symbol methods of [Cr1].

Second strategy: Computing congruences of Fourier coefficients, and order
of vanishing of ∆. Another possible computational strategy to establish modular p-
congruences is suggested by the following proposition (whose proof follows from the results
already quoted in [R] and [M-R]).

Proposition. Let N be an integer, and p an odd prime number such that p2 does
not divide N . Let E and F be elliptic curves defined over Q both (of conductor N ,
and) contained as abelian subvarieties of the new part of J0(N). Suppose that the GQ-
representation on E[p] is irreducible.

Then E[p] = F [p] as subgroups of J0(N) (and, in particular, conditions (1)–(5) all
hold) if

(i) an(E) ≡ an(F ) mod p for all n, and

(ii) if p divides N , ordp(∆E) is not congruent to 0 mod p.

To implement this strategy for m = p, we must check (i) and (ii). Of course, (ii) only
requires a finite number of different computations and therefore it is feasible, and very easy
in the cases of interest to us, to make such a check. But (i) involves an infinite number
of distinct computations. Here we make the following convention: if we have checked that
a`(E) ≡ a`(F ) mod p for all prime numbers ` < 1000, and if, in the few cases where
there are prime divisors ` of pN which are greater than 1000, we also have checked the
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p-congruence for these `’s as well, we will say that the pair E and F seem to satisfy a p-
congruence. If, further, the hypotheses of the proposition, together with (ii) also hold, we
will then also say that such a pair E and F seem to satisfy a modular p-congruence. In any
such instance, if one wanted to actually prove the existence of a p-congruence or modular
p-congruence, further work would be necessary: for example, one could use the results of
[Sturm] to reduce the checking of (i) to the checking of a finite number of congruences.

However, as we have mentioned, for most of the cases tabulated below (including
all those in Table 1, where m is odd) we have been able to follow the first strategy and
therefore we will have shown that the congruence an(E) ≡ an(F ) mod m does in fact hold
for all n. When we have only established that a p-congruence, or modular p-congruence,
seems to be the case we explicitly indicate this in the tables.

Remark. Assume the Birch and Swinnerton-Dyer Conjecture, and the Shafarevich-
Tate Conjecture. If E and F are optimal, of the same conductor N , and are modular
p-congruent one to another (p > 2) then the parity of the Mordell-Weil ranks of E and F
are the same.

To see this, just note that the parity of the Mordell-Weil ranks is determined by the
sign of the eigenvalue ±1 of the operator wN on E and F as they sit in J0(N), and since
p > 2 this sign can be read off by the action of wN on E[p] = F [p].

The first two examples. It may very well be the case that “asymptotically” for high
values of the conductor N , the subgroup X(E/K)o of visible elements does not account for
a large portion of X(E/K) or even of X(E/K)[mE ]. Nevertheless, we began to examine
the issue by considering the“ first” two instances of nontrivial Shafarevich-Tate group
for optimal semi-stable elliptic curves (i.e. the two lowest conductors N for which this
occurs). These are tabulated in [Cr1] and are the curves labelled 571A1 and 681B1 there.
The curve 571A1 has trivial Mordell-Weil group, and the Mordell-Weil group of 681B1
consists of 2-torsion; their Shafarevich-Tate groups are isomorphic to Z/2Z×Z/2Z and to
Z/3Z × Z/3Z, respectively. Checking [Cr1] one immediately finds the happy “accident”
that 571A1 admits a 2-congruence with the optimal elliptic curve factor 571B1, whose
Mordell-Weil rank is 2 and whose 2-part of X is trivial. And with 681B1, a similar
“accident” happens: 681B1 seems to admit a 3-congruence with the optimal elliptic curve
factor 681C1, whose Mordell-Weil rank is 2 and whose 3-part of X is trivial. Further
computation, using the “first strategy” given above, shows that these congruences do hold
fully in both cases, in the sense that condition 5 above holds: the 2-torsion of 571A1
and 571B1 coincide in J0(571), and the 3-torsion of 681B1 and 681C1 coincide in J0(681).

The values of the orders of X given in [Cr1] and [Cr3] are in all cases the so-called
“analytic order” of X, which is the order as predicted from the value of the L-series at
s = 1 by the conjecture of Birch and Swinnerton-Dyer; hence this data, and the data that
will be tabulated below should be taken as conditional on this conjecture. Let us therefore
officially assume the truth of the Birch and Swinnerton-Dyer conjecture for the rest of this
article.
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It follows that all of X(571A1/Q) is visible in the abelian surface J := (571A1 ⊕
571B1)/Φ, where Φ is isomorphic to the kernel of multiplication by 2 in either 571A1
or 571B1, and is embedded diagonally. Moreover, the two independent generators of
the Mordell-Weil group of 571B1 explain the two independent generators (mod 2) of
X(571A1/Q). Similarly, all of X(681B1/Q) is visible in the abelian surface J :=
(681B1 ⊕ 681C1)/Φ where Φ is isomorphic to the kernel of multiplication by 3 in either
681B1 or 681C1, and, again, the two independent generators of the Mordell-Weil group
of 681C1 explain the two independent generators (mod 3) of X(681B1/Q). Moreover the
abelian surface J = (681B1⊕ 681C1)/Φ is an abelian subvariety of J0(681).

About the data. To make some further tests to see whether these were two extremely
lucky, but singular, occurrences, Adam Logan examined squarefree conductors N < 3000
with the help of data and programs of the first author (see [Cr5]). Logan showed that
all elements of odd order in the Shafarevich-Tate groups of optimal semi-stable elliptic
curves over Q of conductor N < 2849 are visible in abelian surfaces contained in the
jacobian J0(N) (these computations being again conditional upon the conjecture of Birch
and Swinnerton-Dyer, and on the assumption that certain “apparent” m-congruences are
actual m-congruences). In this regard, one should also mention the surprising computations
done by Amod Agashé [A] (a PhD student of Loic Merel) who, along with Merel, has
been independently investigating the order of the Shafarevich-Tate group of the winding
quotients of J0(N) for N prime. They find that X(J0(N)) vanishes surprisingly often
(but not always; e.g. there is an element of order 7 in X(J0(1091))).

The first author has since continued this investigation to all levels up to 5500. In the
rest of this paper we will present and discuss the data obtained.

The data in detail. It appears that all of the elliptic curves with nontrivial Shafarevich-
Tate group with conductor ≤ 5500 have Mordell-Weil rank 0. Two caveats are necessary
here, however: first, we have not yet made systematic tables of the (analytic) order of X
for non-optimal curves in the higher range 1000 < N ≤ 5500 which was not already covered
in [Cr3]. Second, for optimal curves of positive rank r, our claim that the analytic order
of X is trivial is based upon the assumption that the r independent points we have (as
listed in [Cr1] and supplementary computer files in [Cr5]) do generate the full Mordell-Weil
group modulo torsion, rather than a subgroup of index > 1. We have only checked this
in some cases.

The nontrivial Shafarevich-Tate groups for N in this range are either of order p2 for
p = 2, 3, 5 or 7 or else of order 16. Specifically, there are 153 occurrences of order 4, 37
of order 9, 11 of order 16, 13 of order 25 and one of order 49. In discussing the data, it is
useful to distinguish between instances where the Shafarevich-Tate group is of odd order
or of order a power of two, these being the only cases that arise in the range tabulated. We
remark that for all the cases where X has order 16, a 2-descent (using the first author’s
program mwrank, see [Cr6]) shows that the 2-rank of X is 2.
The kernel of multiplication by the modular degree. Recall the inclusion of
subgroups of the Shafarevich-Tate group of E,

X(E/Q)o ⊂X(E/Q)[mE ] ⊂X(E/Q).
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We find only three cases, where the modular degree mE does not annihilate all of X(E/Q),
i.e., where X(E/Q)[mE ] differs from X(E/Q). The first, found by Logan, is given by
the curve E = 2849A1 which has X(E/Q) of order 9, but modular degree not divisible
by 3. In particular, none of X(2849A1/Q) is visible in J0(2849). Similarly, 4343B1 and
5389A1 all have X of order 9 but degree not divisible by 3.

But for all other cases examined, X(E/Q)[mE ] = X(E/Q) and we find much the
same pattern as was exhibited by the examples given above, of conductors 571 and 681.
For convenience, we divide the results into, first, the cases where X has odd order > 1,
and second, the cases of even order.

The Shafarevich-Tate groups of odd order: For all but two of the optimal elliptic
curve factors E of squarefree conductor N ≤ 5500 with X of odd order p2, other than
the “invisible” cases 2849A1, 4343B1 and 5389A1, we find another optimal elliptic curve
factor F which satisfies an m-congruence with E and such that F has trivial X but
Mordell-Weil rank 2. The exceptions are 4229A1 (which is the only optimal curve of
conductor 4229) and 5073D1 (where none of the other optimal curves of conductor 5073
has rank 2). A similar phenomenon occurs for all but four the curves E whose conductor
is in this range but is not squarefree, with X of order p2. There are exceptions at levels
2392, 3364, 4914, and 5054 where we did not find any suitable congruent curve.

In most cases, F has the same conductor as E, but for E = 3306B1 and E = 5136B1,
which both have X of order 9, the conductor of F is a proper divisor of that of E (and there
is no suitable curve F at the same level). The curve E = 3306B1 satisfies a 3-congruence
with F = 1102A1 which has rank 2, and E = 5136B1 is 3-congruent to F = 1712D1 of
rank 2.

It would then follow that, with the exception of the exceptional cases listed above, all
of X(E/Q) is visible in the abelian surface J := E⊕F/Φ where Φ ∼= E[p] ∼= F [p] and J is
a abelian subvariety of J0(M) for some M . Usually, M = N , and J is even in the “new”
part of J0(N), but there are exceptions to this as we have just seen.

In one case (conductor 2534) three optimal elliptic curve factors are all 3-congruent.
Two of these elliptic curves (2534E1 and 2534F1) have Mordell-Weil rank zero and X of
order 9, and the third (2534G1) is the “explanatory” optimal factor: it has trivial X but
Mordell-Weil rank equal to 2. The curve 4592G1 of rank 2 explains both the elements of
order 5 in 4592D1, to which it is 5-congruent, and also the elements of order 3 in 4592F ,
to which it is 3-congruent.

There is only one example here where X has order 49, namely 3364C1. However, this
curve satisfies no congruence modulo 7 to any curve in the range studied, though its degree
is a multiple of 7, and neither of the other two curves at that level has rank 2. (These
curves are the 29-twists of the curves 116ABC listed in [Cr1], and all have rank 0.)

The “invisible” examples. Since 2849A1 is our first invisible example, it may be
worth looking a bit more closely at it. Both Loic Merel and Richard Taylor have suggested
that one test to see if its Shafarevich-Tate group becomes visible in J1(2849). We have
not yet made this test. The invisibility of this example in J0(2849) is the reason for the
capitalization of the word “NONE” which appears in the “F -column” of its entry in the
table. Similar remarks apply to the invisible examples 4343B1 and 5389A1.
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Examples where X is of even order and E does not have a rational point of
order 2. Here a similar pattern is found. In Table 2, the congruences listed between
curves with the same conductor are in most cases true modular 2-congruences proved using
our first computational strategy. In a few such cases, and in all cases where the conductors
are not equal, the first strategy failed and so we only claim that the curves “seem to”
satisfy a congruence modulo 2, in the sense defined earlier. The exceptions, which are
marked in the table, are: 3664J (for all three curves F listed), 4528C and 4528A (but the
congruence between 4528C and 4528B is proved), 4776C and 5296C.

One feature peculiar to the prime p = 2 is that it is possible for a “switch of parity” to
occur; that is, it is possible for two optimal factors of J0(N) to admit a congruence modulo
p = 2 and have the property that they have different sign in their functional equations.
Among the elliptic curves not possessing a rational point of order 2, and of conductor
≤ 5500 with X of even order there are only two such cases which have a “parity switch”.
The first is E = 3431B1 for which the 2-congruent curve F has rank one. The order of
X(E/Q) is 4; E admits a 2-congruence to both of the other optimal elliptic curves 3431A1
and 3431C1 of its conductor, which both have rank 1 and no 2-torsion. Similarly, 3995A1
has X of order 4 and is 2-congruent to 3995D1 which has rank 1 and no 2-torsion. In the
remaining cases where a corresponding F exists, F has Mordell-Weil rank 2.

There are cases where there is more than one congruent curve of rank 2 to explain the
nontrivial elements of X. At level 5302, there are two curves, 5302B1 and 5302J1, which
have X of order 4 and 16 respectively, and which satisfy a congruence modulo 2 with each
other and also with the four curves 5302C1–D1–F1–I1, all of which have rank 2.

As with the cases of odd order X , there are several examples where we find a suitable
explaining congruence with an optimal curve at a different level. For example, X(2045B1)
is “explained” by the curve 4090B1 of rank 2 to which “seems to be” 2-congruent.

Examples where X is of even order and E has a rational point of order two.
There are 90 such elliptic curves E. All but three of these have X of order 4 and the
remaining three, 2742B, 3800D, and 5335A, have X of order 16. For all but eight of
these 90 examples, there is another elliptic curve F of the same conductor as E which
also possesses a rational point of order 2, and with positive Mordell-Weil rank. We have
not yet checked which of these 82 F ’s are (or even “seem to be”) modular 2-congruent
to their corresponding E’s. The eight E’s which do not possess a corresponding F are
1105A, 2145D, 2145G, 3069A, 4901C, 5135B, 5185A, and 5335A.

The tables. In the two tables below, the data we have compiled is reproduced. The
128 curves E occurring in these tables comprise all optimal elliptic curves E of conductor
N ≤ 5500 with nontrivial X except for the ninety optimal curves which have X of even
order and a rational point of order 2. Each of these 128 elliptic curves E is listed together
with the corresponding elliptic curve F of positive Mordell-Weil rank which “explains”
X(E/Q) (except in the cases where F doesn’t exist). If there is no indication to the
contrary, the congruence modulus linking X(E/Q) and F is

√
|X|. The modular degrees

mE and mF are also tabulated: these were computed by the method of [Cr4]. To save
space, we do not give here the coefficients of a minimal Weierstrass equation for the curves;
these may be obtained from the first author’s anonymous ftp site [Cr5].

16



The marks (1), (2), (3) and (4) in the last column refer to the notes after the tables.

Table 1. Odd |XE | > 1, all N ≤ 5500

E
√
|XE | mE F mF Remarks

681B 3 3 · 53 681C 25 · 3
1058D 5 23 · 3 · 5 · 7 · 23 1058C 24 · 5
1246B 5 26 · 34 · 5 1246C 26 · 5
1664K 5 27 · 5 · 7 1664N 26 · 5
1913B 3 3 · 103 1913A 22 · 3 · 52

2006E 3 26 · 3 · 5 · 7 · 23 2006D 27 · 3
2366D 3 24 · 32 · 13 2366E 25 · 32 · 5 E has rational 3-torsion
2366F 5 24 · 3 · 5 · 13 · 19 2366E 25 · 32 · 5
2429B 3 2 · 3 · 73 2429D 23 · 3 · 13
2534E 3 22 · 32 · 53 · 11 2534G 25 · 32 · 13
2534F 3 22 · 32 · 5 · 7 2534G 25 · 32 · 13
2541D 3 26 · 32 · 7 · 11 2541C 25 · 32

2574D 5 27 · 32 · 5 · 72 2574G 28 · 5
2601H 3 28 · 3 · 17 2601L 28 · 3
2674B 3 24 · 33 · 13 2674A 24 · 32

2710C 3 25 · 33 · 7 2710B 25 · 32

2718D 3 26 · 3 · 5 · 7 · 29 2718F 26 · 3 · 5
2768C 3 22 · 3 · 41 2768B 25 · 3 · 7
2834D 5 22 · 3 · 5 · 109 2834C 26 · 32 · 5
2849A 3 25 · 5 · 61 NONE −
2900D 5 25 · 34 · 5 2900C 26 · 3 · 5
2932A 3 3 · 277 none −
2955B 3 23 · 35 · 5 2955C 26 · 33

3054A 3 2 · 3 · 52 · 11 3054C 24 · 3 · 5 · 7
3185C 5 24 · 3 · 5 · 7 · 112 3185B 24 · 3 · 5
3306B 3 24 · 33 · 52 1102A 25 · 32 (1)
3364C 7 26 · 32 · 52 · 7 none −
3384A 5 210 · 3 · 5 · 11 3384C 28 · 5
3536H 3 29 · 32 · 5 · 11 3536G 27 · 32

3555E 3 23 · 3 · 5 · 17 3555D 27 · 3 · 5
3712J 3 26 · 3 · 13 3712I 26 · 3
3879E 3 26 · 34 · 5 3879D 25 · 33

3933A 3 25 · 3 · 5 · 13 3933B 26 · 3 · 5
3952C 5 24 · 3 · 5 · 13 · 17 3952E 25 · 3 · 5
3954C 3 24 · 3 · 53 · 72 3954D 25 · 3 · 5
4092A 5 27 · 3 · 5 · 19 4092B 26 · 3 · 5
4229A 3 23 · 3 · 7 · 13 none −
4343B 3 24 · 1583 NONE −
4592D 5 28 · 32 · 5 · 17 4592G 26 · 32 · 5
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4592F 3 26 · 33 · 72 4592C 26 · 33

4592F 3 26 · 33 · 72 4592G 26 · 32 · 5
4606B 3 28 · 33 · 5 · 7 4606C 27 · 33

4675J 3 22 · 33 · 53 4675I 26 · 33

4914N 3 24 · 35 none − E has rational 3-torsion
4963C 3 22 · 3 · 71 4963D 29 · 3
5046H 3 24 · 3 · 52 · 7 5046J 24 · 3 · 5 · 11
5054C 3 23 · 33 · 11 none − (2)
5073D 3 25 · 3 · 5 · 7 · 23 none −
5082C 5 24 · 32 · 5 · 7 · 11 · 13 5082D 28 · 3 · 5
5136B 3 24 · 3 · 59 1712D 25 · 7 (1)
5389A 3 22 · 2333 NONE −
5499E 3 27 · 34 · 5 5499F 27 · 33

Table 2. Even |XE |, no rational 2-torsion, all N ≤ 5500

E
√
|XE | mE F mF Remarks

571A 2 23 · 3 · 5 571B 24 · 3
1058B 2 24 · 5 · 23 1058C 24 · 5
1309A 4 27 · 32 · 17 1309B 28 (cong. mod 4)
1325D 2 23 · 33 · 5 1325E 23 · 33

1613B 2 24 · 19 1613A 24 · 5
1701I 2 24 · 34 1701J 24 · 33 (cong. mod 4)
1717A 2 23 · 41 1717B 23 · 13
1738B 2 211 · 33 · 7 1738A 28 (cong. mod 4)
1849D 2 24 · 3 · 7 · 11 1849A 23 · 3 · 11
1856G 2 28 · 3 · 5 1856D 28 (cong. mod 4)
1862C 2 24 · 33 · 7 1862A 24 · 33

1888B 2 28 · 3 1888A 27

1917E 2 23 · 34 1917C 23 · 33

2023A 2 24 · 33 · 17 2023B 24 · 33

2045B 4 23 · 3 · 5 · 7 · 17 2045C 23 · 33 · 13 (cong. mod 2)
2045B 4 23 · 3 · 5 · 7 · 17 4090B 26 · 7 (1)
2089D 2 25 · 3 · 5 2089E 25 · 11
2224E 2 27 · 17 2224F 27 · 3 (cong. mod 4)
2265A 2 25 · 32 · 52 · 7 2265B 25 · 5 · 7 (cong. mod 4)
2409B 2 29 · 52 2409D 25 · 72

2541A 2 25 · 34 · 11 2541C 25 · 32

2554B 2 25 · 13 2554C 24 · 32 · 7
2563C 2 26 · 3 · 7 2563D 24 · 3 · 5
2619C 2 24 · 32 · 5 2619D 24 · 3 · 5
2678A 4 29 · 32 · 23 2678B 27 · 3
2678A 4 29 · 32 · 23 2678I 25 · 3 · 11 (cong. mod 2)
2710A 2 25 · 3 · 52 2710B 25 · 32
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2710A 2 25 · 3 · 52 2710D 25 · 5 · 11
2738C 4 26 · 32 · 37 2738D 26 · 32

3017A 2 23 · 35 none
3370D 2 25 · 5 · 7 3370E 25 · 34 (cong. mod 4)
3380A 2 26 · 33 · 13 3380D 26 · 32 (cong. mod 4)
3431B 2 23 · 33 · 5 none − (3)
3479D 2 26 · 7 · 13 3479E 26 · 13
3509B 2 24 · 32 · 112 3509A 24 · 3 · 5
3555C 2 27 · 33 · 5 · 11 3555D 27 · 3 · 5
3575E 2 24 · 3 · 52 · 7 3575F 24 · 3 · 5 · 7
3664J 2 24 · 32 · 239 3664D 26 · 5 (5)
3664J 2 24 · 32 · 239 3664E 26 · 13 (5)
3664J 2 24 · 32 · 239 3664G 29 (5)
3686D 4 210 · 3 · 72 3686E 211

3718H 4 28 · 3 · 5 · 7 · 13 3718K 28 · 3
3742A 2 24 · 32 · 5 3742B 24 · 5 · 7
3774G 2 210 · 5 · 7 3774D 210 · 3 (cong. mod 4)
3883B 2 23 · 33 · 37 3883A 23 · 3 · 7
3886B 2 26 · 3 · 5 3886G 25 · 33

3975B 2 25 · 3 · 7 · 17 3975E 25 · 3 · 52

3995A 2 26 · 5 · 7 · 653 none − (4)
4046F 2 26 · 32 · 7 · 17 4046D 26 · 32 · 7
4396A 2 23 · 3 · 97 4396C 23 · 34

4428F 2 23 · 35 4428B 23 · 34

4528C 2 27 · 3 4528A 26 · 5 (5)
4528C 2 27 · 3 4528B 26 · 3
4544M 2 28 · 35 4544L 28 · 5 (cong. mod 4)
4544M 2 28 · 35 4544G 27 · 5
4564C 2 24 · 32 · 52 4564A 24 · 3 · 11
4617F 2 24 · 34 4617H 24 · 33

4630A 2 29 · 3 · 5 4630B 26 · 32

4630A 2 29 · 3 · 5 4630C 27 · 32

4630D 2 26 · 3 · 5 · 13 4630B 26 · 32

4630D 2 26 · 3 · 5 · 13 4630C 27 · 32

4655G 2 25 · 3 · 5 · 7 · 19 4655F 25 · 3 · 5 (cong. mod 4)
4655G 2 25 · 3 · 5 · 7 · 19 4655C 25 · 33 · 7
4749A 2 23 · 3 · 19 · 23 4749B 23 · 7 · 23
4761A 2 26 · 5 · 23 4761B 26 · 5
4776C 2 26 · 32 · 5 · 11 4776B 25 · 52 (5)
4878A 2 25 · 17 · 79 4878C 26 · 19
4941B 2 23 · 32 · 11 4941C 23 · 34

4975C 2 26 · 5 · 17 4975B 26 · 33

4975C 2 26 · 5 · 17 4975D 26 · 17
5046C 2 24 · 3 · 52 · 7 · 29 5046J 24 · 3 · 5 · 11
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5049A 2 26 · 33 · 5 5049B 26 · 3 · 52 (cong. mod 4)
5067C 2 23 · 3 · 5 · 13 563A 22 · 13 (1)
5067C 2 23 · 3 · 5 · 13 1126A 24 · 11 (1)
5067C 2 23 · 3 · 5 · 13 4504A 26 · 5 (1)
5067C 2 23 · 3 · 5 · 13 4504B 25 · 13 (1)
5067C 2 23 · 3 · 5 · 13 4504C 25 · 17 (1)
5117C 4 26 · 3 · 7 · 37 5117D 26 · 5 (cong. mod 2)
5133C 2 25 · 31 5133B 25 · 3 · 7
5133C 2 25 · 31 5133D 27 · 5 · 11
5150C 2 24 · 34 · 52 5150D 24 · 32 · 52

5244A 2 27 · 32 · 5 · 7 5244B 27 · 33 (cong. mod 4)
5296C 2 24 · 3 · 37 5296B 27 · 3 (5)
5300C 2 24 · 32 · 5 · 23 5300G 24 · 32 · 23
5302B 2 25 · 3 · 52 5302C 27 · 5
5302B 2 25 · 3 · 52 5302D 26 · 32

5302B 2 25 · 3 · 52 5302F 28 · 13
5302B 2 25 · 3 · 52 5302I 26 · 52

5302J 4 26 · 101 5302C 27 · 5 (cong. mod 2)
5302J 4 26 · 101 5302D 26 · 32 (cong. mod 2)
5302J 4 26 · 101 5302F 28 · 13 (cong. mod 2)
5302J 4 26 · 101 5302I 26 · 52

5312K 2 28 · 3 · 5 5312F 29

5312K 2 28 · 3 · 5 5312J 28 · 3 (cong. mod 4)
5390E 2 25 · 3 · 5 · 7 · 19 5390L 25 · 3 · 5 · 19
5427A 2 27 · 32 5427B 27 · 32

5427A 2 27 · 32 5427F 26 · 32

5427E 2 26 · 33 5427B 27 · 32

5427E 2 26 · 33 5427F 26 · 32

5445A 2 26 · 3 · 5 · 11 5445B 26 · 3 · 5
5456A 2 26 · 3 · 5 · 19 2728C 25 · 3 · 11 (1)
5456A 2 26 · 3 · 5 · 19 2728D 25 · 11 (1)

Notes. (1): Curve F is congruent to curve E and has rank 2, but has a different level. If
there is more than one such curve F , all are listed (on separate lines).

(2): The curve 5054C is the (-19)-twist of the curve 14A; it has a rational 3-isogeny
but no rational torsion.

(3): The curve 3431B1 is 2-congruent to both 3431A1 and 3431C1 which have rank 1.
(4): The curve 3995A1 is 2-congruent to 3995D1 which has rank 1.
(5): For these pairs, as well as all those for which E and F have different conductors,

we only claim that E and F “seem to” satisfy a 2-congruence.

Asymptotic questions. We feel that these issues deserve to be investigated further.
Is the prevalence of “visibility” a phenomenon occurring only in this modest range of
conductors? Is most of X invisible? Or is most of X visible? It is relatively easy to find
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other examples where X(E/Q) is not annihilated by mE (and hence examples of invisible
elements of X(E/Q) in J0(N) where N is the conductor of E), if one searches among all
twists (e.g., by quadratic Dirichlet characters) of a given modular elliptic curve.

To discuss asymptotics more specifically, if we are given a non-negative function f(E)
where E ranges through all, or a class of, (modular) elliptic curves defined over Q, let us
define the upper conductor exponent of f to be the minimal real number α having
the property that for all ε > 0 there is a finite N(ε) such that

f(E) < Nα+ε

if conductor(E) = N ≥ N(ε) (putting α = ∞ if there is no such real number). Thus,
as Ram Murty has shown in [Mur], the ABC conjecture is equivalent to the statement
that the upper conductor exponent of the modular degree (f(E) = mE) for semistable
elliptic curves is ≤ 2. See also current publications of A. Granville in this regard. Also,
Goldfeld and Szpiro [G-S] have conjectured that the upper conductor exponent of the order
of the Shafarevich-Tate group (f(E) = |X(E/Q)|) is ≤ 1/2. See also [de W] where it is
shown (conditional on the Birch-Swinnerton-Dyer conjecture and the Riemann hypothesis
for Rankin-Selberg zeta functions associated to certain weight 3/2 modular forms) that
the upper conductor exponent of f(E) = |X(E/Q)| is ≥ 1/2.

Problem. What are the upper conductor exponents of orders of |X(E/Q)◦| and of
|X(E/Q)[mE ]| as E ranges through all optimal elliptic curves over Q? What are they
(i.e., are they any different) when E ranges through all semi-stable optimal elliptic curves
over Q?

If it turns out that these upper conductor exponents are small it would be especially
interesting to understand why so much of X for conductors ≤ 5500 is visible, and is
already visible in abelian surfaces, as our data shows.

Most of the data used in these investigations, including the coefficients of minimal
equations of all the elliptic curves mentioned here, their modular degrees and traces of
Frobenius, may be obtained by anonymous ftp from the first author, from the ftp site
[Cr5].

REFERENCES

Printed Publications
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