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Abstract. Let K be a field and H be a set of hyperplanes in P n(K). When K is
a function field, we show that the following are equivalent. (a) H is nondegenerate
over K. (b) The height of the (S,H)-integral points of P n(K) − H is bounded.
(c) P n

K − H is an abc variety. When K is a number field and H is nondegenerate
over K, we establish an explicit bound on the number of (S,H)-integral points of
P n(K) −H. Finally, we discuss the geometric properties of holomorphic maps into
P n(C) omitting a set of hyperplanes with moving targets.

0. Introduction

Let F be a number field and H be a set of hyperplanes in Pn(F ). Let S be

a finite set of valuations of F including all the archimedean valuations. When H
is in general position and the number of hyperplanes in H is at least 2n + 1, Ru

and Wong [RW] proved that the number of the (S,H)-integral points is finite; later

the author [Wa2] provided an explicit bound on the number. Ru then found a

necessary and sufficient condition on H such that the number of the (S,H)-integral

points of Pn(F )−H is finite; he also showed that this is a necessary and sufficient

condition of Brody hyperbolicity. However, an explicit bound on the number of the

(S,H)-integral points was not obtained in [Ru].

Let C be an irreducible nonsingular projective algebraic curve of genus g defined

over an algebraically closed field k of characteristic p ≥ 0. Let K be the function

field of C and H be a set of hyperplanes in Pn(K). Let S be a set consisting of

finitely many points of C. When p = 0, the author [Wa2] showed that if H is in

general position and the number of hyperplanes in H is at least 2n + 1 then the

height of the (S,H)-integral points is bounded and the bound is a linear function

of |S|. When p > 0, the author [Wa3] showed that if H is in general position and
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the number of hyperplanes in H is at least 2n + 2 then under certain condition the

height of the (S,H)-integral points is bounded and the bound is a linear function

of |S|.
Recently, motivated by the abc theorem for function fields (cf. [Ma], [BM], [Vol]

[Wa1] and [No]), Buium defined abc varieties and proved that any affine open subset

of an abelian variety over function fields (of characteristic 0) with trace zero is an

abc variety.(cf. [Bu]) The definition of abc varieties is closely related to the (S, D)-

integral points of a projective space V deleting a very ample divisor D. It turns

out that the previous results on function fields done by the author are all theorems

about abc varieties.

In the geometric case, as mentioned before that Ru gave a necessary and sufficient

condition for Pn(C) − H to be Brody hyperbolic. A more general question to

consider is when the hyperplanes in H are moving, i.e. the coefficients of the linear

forms corresponding to H are holomorphic functions. In [Wa4], the author applied

the method in [Wa2] and obtained a generalization of the Picard’s theorem with

moving targets.

In this paper, we will improve the number field result in [Ru] by giving an explicit

bound on the number of the (S,H)-integral points. In the function field case of zero

characteristic, we will show that the condition on H given in [Ru] is also necessary

and sufficient for the height of the (S,H)-integral points to be bounded; and is also

a necessary and sufficient condition for Pn
K − H to be an abc variety. Therefore,

we will prove that Pn
K −H is an abc variety if and only if the height of the (S,H)-

integral points of Pn(K) − H is bounded. Finally, in the geometric case we deal

with the situation when the coefficients of the linear forms corresponding to the

hyperplanes in H are holomorphic functions.

Ackowlegements. The author wishes to thank Jing Yu and Min Ru for helpful

suggestions.

1. abc varieties and (S, D)-integral points

In this section we will restrict ourselves to function fields. However, the definition

of abc varieties and (S,D)-integral points can be easily adapted to number fields.

Let C be an irreducible nonsingular projective algebraic curve of genus g defined

over an algebraically closed field k of characteristic p ≥ 0. Let K be the function

field of C. Given a point P ∈ C, we denote by vP the normalized valuation

associated to P . For elements f0, ..., fn of K, not all zeros, we define the height as

h(f0, ..., fn) :=
∑

P∈C

−min{vP (f0), ..., vP (fn)}.
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For an element f of K, we define the height as

h(f) :=
∑

P∈C

−min{0, vP (f)}.

We now recall the definitions of (S,D)-integral points (cf. [Voj]) and abc varieties

(cf. [Bu]). Let V be a projective variety defined over K. Let D be a very ample

effective divisor on V and let 1 = φ0, φ1, ..., φN be a basis of the vector space:

L(D) = {f |f is a rational function on V such that f = 0 or (f) ≥ −D}.

Then φ = (φ0, ...., φN ) defines a morphism from V to PN ; and τ → (φ1(τ), ..., φN (τ))

is an embedding of V (K)−D into KN .

Definition. A point τ of V (K) − D is said to be an (S, D)-integral point if

vP (φi(τ)) ≥ 0, 1 ≤ i ≤ N , for every P /∈ S.

Following [Bu] we may define height and conductor as following:

hφ(τ) = h(φ(τ)) = h(φ0(τ), ..., φN (τ)),

Condφ(τ) = {P ∈ C : min{vP (φ1(τ)), . . . , vP (φN (τ))} < 0},
condφ(τ) = |Condφ(τ)|.

Definition. We say that V −D satisfies the abc estimate over K if

hφ(τ) << condφ(τ) + O(1), for every τ ∈ V (K)−D,

where “ << ” means the inequality holds up to multiplication with a positive con-

stant.

Remark. This definition does not depend on the choice of the embedding.(cf. [Bu])

When there is no confusion, we will omit the subscript φ.

Definition. VK − D is an abc variety if it satisfies the abc estimate over every

finite extension L of K.

In this paper, we only consider the case when V = Pn
K and D is a set of hyper-

planes in Pn(K). Let H be a set of q distinct hyperplanes in Pn(K) and let Li,

1 ≤ i ≤ q, be the linear forms corresponding to H. Then we can fix an embedding

from Pn(K)−H to KN in the following form

(xq
0/

q∏

i=1

Li(x), . . . , xq
n/

q∏

i=1

Li(x), . . . ),
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where each coordinate of the embedding is in the form xi0
0 xi1

1 . . . xin
n /

∏q
i=1 Li(x)

with
∑n

j=0 ij = q. Let

φ = (1, xq
0/

q∏

i=1

Li(x), . . . , xq
n/

q∏

i=1

Li(x), . . . ).

Suppose that η is a point in Pn(K) and is represented by (f0, ..., fn). Then from

the definition of height

h(fq
0 , ..., fq

n) ≤ h(
q∏

i=1

Li(f0, ..., fn), fq
0 , ..., fq

n, ...) = h(φ(η)).

On the other hand, if Li =
∑n

j=0 aijxj then vP (Li(f0, ..., fn)) ≤ min{vP (f0), ..., vP (fn)}+
min{vP (ai0), ..., vP (ain)}. Therefore

h(φ(η)) = h(
q∏

i=1

Li(f0, ..., fn), fq
0 , ..., fq

n, ...) ≤ qh(f0, ..., fn) +
q∑

i=1

h(ai0, ..., ain).

Together we have

qh(f0, ..., fn) ≤ h(φ(η)) ≤ qh(f0, ..., fn) + O(1).

Proposition 1. Let H be a set of q distinct hyperplanes in Pn(K). If Pn
K −H is

an abc variety, then the height of the (S,H)-integral points of Pn(K)−H is bounded

linearly in |S|.

Proof. Let τ be an (S,H)-integral point of Pn(K) − H and be represented by

(f0, ..., fn). Then from the definitions of Condφ and (S,H)-integral points we have

condφ(τ) ≤ |S|.

Pn
K −H is an abc variety, hence

hφ(τ) << condφ(τ) + O(1).

Since qh(f0, ..., fn) ≤ hφ(τ), we have

h(f0, ..., fn) << |S|+ O(1).

Remark. This proposition is true for number fields.
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2. Further results in function fields

Let F be a number field and let H be a set of hyperplanes in Pn(F ). Ru gave

a necessary and sufficient condition on H such that Pn(F ) − H has only finitely

many (S,H)-integral points. We will show in this section that for a function field

K this is a necessary and sufficient condition for Pn
K −H to be an abc variety; and

also a necessary and sufficient condition such that the height of the (S,H)-integral

points of Pn(K)−H to be bounded.

We recall some definitions and results from [Ru].

Notation. Let L be a set of linear forms in n + 1 variables which are pairwise

linearly independent. We denote by (L)F the vector space generated by the linear

forms in L over F .

Definition. Let F be a field and H be a set of hyperplanes in Pn(F ). We let L
be the set of linear forms corresponding to H. (We note here that all linear forms

in L are pairwise linearly independent over F .) H is said to be nondegenerate over

F if dim(L)F = n + 1 and for each proper nonempty subset L1 of L

(L1)F ∩ (L − L1)F ∩ L 6= ∅.

Remark. If H is in general position and the number of hyperplanes of H is no less

than 2n + 1, then H is nondegenerate over F .

Definition. Let F be a field and H be a set of hyperplanes in Pn(F ). Let V

be a subspace of Pn(F ). V is called H-admissible if V is not contained in any

hyperplane in H.

Proposition(Ru). Let H be a set of hyperplanes in Pn(F ). Then H is non-

degeneate over F if and only if for every H-admissible subspace V of Pn(F ) of

projective dimension greater than or equal to one, H ∩ V contains at least three

distinct hyperplanes which are linearly dependent over F .

We will need the following version of the abc theorem [Br-Ma] for function fields

of characteristic 0.

Theorem (Brownawell-Masser). Let the characteristic of K be zero. If f0, ..., fn

are S-units and f0 + · · ·+ fn = 1, then either some proper subsum of f0 + · · ·+ fn

vanishes or

h(f0, ..., fn) ≤ n(n + 1)
2

max{0, 2g − 2 + |S|}. (1)

We also need the following version of abc theorem [Wa1] for function fields of

positive characteristic.
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Theorem (Wang). Let the characteristic of K be a positive integer p. Suppose

that f0, ..., fn+1 are S-units of K. If f0 + · · ·+ fn = fn+1 and f0, ..., fn are linearly

independent over Kpm

for some positive integer m, then

h(f0, ..., fn) ≤ n(n + 1)
2

pm−1 max{0, 2g − 2 + |S|}. (2)

The main results in this section are the following.

Theorem 1. Let K be the function field of a nonsingular projective algebraic curve

C which is defined over an algebraically closed field k with zero characteristic. Let

S be a set consisting of finitely many points of C such that there exist nonconstant

S-units. Let H be a set of hyperplanes in Pn(K). Then the following are equivalent

(a) H is nondegenerate over K.

(b) Pn
K −H is an abc variety.

(c) The height of the (S,H)-integral points of Pn(K) − H is bounded linearly

in |S|.
(d) The height of the (S,H)-integral points of Pn(K)−H is bounded.

Theorem 2. Let K be the function field of a nonsingular projective algebraic curve

C which is defined over an algebraically closed field k with characteristic p > 0. Let

S be a set consisting of finitely many points of C. Let Li = Xi, 0 ≤ i ≤ n, and

Ln+1+i =
n∑

j=0

aijXj, 0 ≤ i ≤ n, where aij are elements of K. Let H be the set

of 2n+2 hyperplanes defined by Li, 0 ≤ i ≤ 2n + 1. Let Sn be the permutation

group of {0, 1, 2, .., n}. If H are in general position, i.e. any n + 1 linear forms

corresponding to H are linearly independent, and the set {Πn
i=0aiσ(i)| σ ∈ Sn} is

linearly independent over k, then Pn
K −H is an abc variety.

Proof of Theorem 1. We first show that (a) implies (b). Let L = {L1, ..., Lq}
be the set of linear forms corresponding to H. Let τ be a point of Pn(K) − H
and be represented by (f0, ..., fn). Denote by li = Li(f0, ..., fn). Let SH be a set

consisting of finitely many points of C such that every coefficient of each linear form

Li has no zero or pole outside SH. Therefore, vP (li) ≥ min{vP (f0), ..., vP (fn)} for

P /∈ SH. On the other hand, from the definition of Cond(τ), we have qvP (fj) ≥
q∑

i=1

vP (li), 0 ≤ j ≤ n, for every P /∈ Cond(τ). Therefore

vP (li) = min{vP (f0), ..., vP (fn)}, for P /∈ Cond(τ) ∪ SH, 1 ≤ i ≤ q. (1)

Suppose that the set {Li1 , ..., Lim} is linearly dependent over K and every proper

subset of {Li1 , ..., Lim} is linearly independent over K. Then we have a linear

equation

ai1Li1(X) + · · ·+ aimLim(X) ≡ 0, (2)
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where aij
∈ K×. We call equation (2) a minimal relation. Since elements of L

are linear forms in n + 1 variables and are pairwise linearly independent over K,

we have 3 ≤ m ≤ n + 2. It is clear that up to a nonzero factor in K there are

only finitely many such minimal relations for the set L. Throughout the proof we

will fix a finite set of minimal relations representing all minimal relations for L up

to a nonzero factor in K. Without loss of generality, we can enlarge the size of

SH. Therefore, we will assume that every coefficient of the minimal relations in

this finite set has no zero or pole outside of SH. Let Sτ = Cond(τ) ∪ SH. We now

consider equation (2). After rearranging the index, we may assume that

a1L1(X) + · · ·+ amLm(X) ≡ 0, (3)

where ai, 1 ≤ i ≤ m, is an Sτ -unit. Then we have the following equation.

a1l1 + · · ·+ amlm = 0.

After rearranging the index we may assume that a1l1 + · · ·+ aulu = 0 with u ≤ m

and no proper subsum of a1l1 + · · ·+ aulu vanishes. Therefore

a2l2
a1l1

+ · · ·+ aulu
a1l1

= −1. (4)

By (1), li
l1

, 1 ≤ i ≤ q, is an Sτ unit. Hence by the theorem of Brownawell and

Masser we have

h(
aili
a1l1

) ≤ u(u− 1)
2

max{0, 2g − 2 + |Sτ |}, 1 ≤ i ≤ u. (5)

From the definition of height,

h(
li
l1

) ≤ h(
aili
a1l1

) + h(
ai

a1
). (6)

The coefficients a′is in the representing set of minimal relations only depend on L
and the number is finite. Therefore inequalities (5) and (6) imply

h(
li
l1

) <
n(n + 1)

2
|Sτ |+ O1, (7)

where 1 ≤ i ≤ u and O1 only depends on L and can be determined effectively.

From now Oi always represents a constant which only depends on L and can be

determined effectively. If the dimension of the vector space spanned by L1, ..., Lu

over K is n + 1, then after a linear transformation one can show that (cf. [Wa2])

h(f0, ..., fn) ≤ n2(n + 1)
2

|Sτ |+ O2. (8)
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If the dimension of the vector space spanned by L1, ..., Lu over K is less than n+1,

then the set {L1, ..., Lu} is a proper subset of L. Since H is nondegenerate,

(L1, ..., Lu)K ∩ (Lu+1, ..., Lq)K ∩ L 6= ∅. (9)

Suppose that Li ∈ (L1, ..., Lu)K ∩ (Lu+1, ..., Lq)K . If 1 ≤ i ≤ u, then after rear-

ranging the linear forms we have Li = au+1Lu+1 + au+2Lu+2 · · · + awLw, where

aj 6= 0 and is assumed previously to be an Sτ -unit. Similarly, after rearranging the

index, we have an equation

li = au+1lu+1 + au+2lu+2 · · ·+ aν lν , ν ≤ w,

where no proper subsum of the equation vanishes. Therefore we have

h(
lu+1

li
) ≤ n(n + 1)

2
|Sτ |+ O3. (10)

Hence,

h(
lu+1

l1
) ≤ h(

lu+1

li
) + h(

li
l1

)

≤ n(n + 1)|Sτ |+ O4. (11)

If i ≥ u+1, after rearranging the index we may assume that i = u+1. Then we

have Lu+1 = ai1Li1 + · · ·+aiwLiw , where {i1, ..., iw} is an index subset of {1, ..., u}
and aij is an Sτ -unit. Similarly, we have

h(
lu+1

lij

) ≤ n(n + 1)
2

|Sτ |+ O5.

Therefore

h(
lu+1

l1
) ≤ h(

lu+1

lij

) + h(
lij

l1
)

≤ n(n + 1)|Sτ |+ O6. (12)

Hence, we have showed that h( li
l1

) ≤ O7|Sτ | + O(1) for 1 ≤ i ≤ u + 1. If

(L1, ..., Lu+1) = (L), then we are done. Otherwise, we can repeat the same ar-

gument. Since dim(L)K = n + 1, after repeating the argument finitely many

times we can find linear forms L1, ..., Lw such that dim(L1, ..., Lw)K = n + 1 and

h( li
l1

) ≤ O8|Sτ |+O9, 1 ≤ i ≤ w. Therefore, after a linear transformation (cf. [Wa2])

h(f0, ..., fn) ≤ O10|Sτ |+ O11 << cond(τ) + O(1). (13)

It is clear from the proof that the abc estimate holds for every finite extension of

K. This shows that Pn
K −H is an abc variety.
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It follows from Proposition 1 that (b) implies (c). (c) implies (d) trivially. It

remains to show that (d) implies (a). We follow the arguments in [Ru]. Assume

that H is not nondegenerate over K. Then there exists an H-admissible subspace

V of Pn(K) of projective dimension greater than or equal to 1 such that H∩V does

not contain at least three distinct hyperplanes which are linearly dependent over

K. After linear changing of basis we may assume that V = Pm(K), m ≤ n. Then

H∩V contains exactly q distinct hyperplanes which are linearly independent over K

and q ≤ m + 1. Without loss of generality we may assume that V = Pn(K) and H
contains exactly q ≤ n+1 distinct coordinate hyperplanes. Let f be a nonconstant

S-unit. Then the point in Pn(K)−H represented by (1, f |S|
r

, ..., f |S|
r

) is an (S,H)-

integral point and

h(1, f |S|
r

, ..., f |S|
r

) = |S|rh(f) ≥ |S|r. (14)

This shows that (d) implies (a).

The proof in [Wa3] can be easily modified to show Theorem 2. For convenience

of readers, we give an outline of the proof.

Proof of Theorem 2. Since k = ∩∞i=0K
pi

[GV], if the set {Πn
i=0aiσ(i)| σ ∈ Sn} is

linearly independent over k, then there exists a positive integer m which depends

only on aij such that the set {Πn
i=0aiσ(i)| σ ∈ Sn} is linearly independent over Kpm

.

Let (f0, ..., fn) represent a point τ in Pn(K)−H. Denote by li = Li(f0, ..., fn).

Let SH be a finite subset of C such that every coefficient of each linear form has

no zero or pole outside SH. Therefore (1) gives

vP (li) = min{vP (f0), ..., vP (fn)} for P /∈ Cond(τ) ∪ SH, 1 ≤ i ≤ q. (15)

Since fi = li 6= 0, 0 ≤ i ≤ n, we may assume that fn = 1. Let Sτ = Cond(τ) ∪ SH.

(15) then implies that li is an Sτ -unit for 0 ≤ i ≤ 2n + 1. Since L0, ..., L2n+1 are

in general position, aij 6= 0. Without loss of generality, we let ain = 1 for every

n + 1 ≤ i ≤ 2n + 1. Then we have the following Sτ -unit equations

ai0f0 + ai1f1 + · · ·+ ai,n−1fn−1 + 1 = ln+1+i, 0 ≤ i ≤ n.

If aβ0f0, aβ1f1, ..., aβ,n−1fn−1, and 1 are linearly independent over Kpm

for some

0 ≤ β ≤ n, then by the theorem of Wang, for 0 ≤ j ≤ n− 1,

h(aβjfj) ≤ h(aβ0f0, aβ1f1, ..., aβ,n−1fn−1, 1)

≤ n(n + 1)
2

pm−1 max{0, 2g − 2 + |Sτ |}.
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From the definition of height we have the following abc estimate

h(f0, ..., fn) ≤ h(ai0f0, ai1f1, ..., ai,n−1fn−1, ai,nfn) + h(
1

ai0
, ...,

1
ain

)

≤ n(n + 1)
2

pm−1 max{0, 2g − 2 + |Sτ |}+
∑

0≤i,j≤n

h(aij)

≤ n(n + 1)
2

pm−1 max{0, 2g − 2 + cond(τ) + SH}+
∑

0≤i,j≤n

h(aij).

Therefore, we only need to consider the case where each set {ai0f0, ..., ai,nfn},
0 ≤ i ≤ n, is linearly dependent over Kpm

. The next lemma shows that this is

impossible if {Πn
i=0aiσ(i)| σ ∈ Sn} is linearly independent over Kpm

. The theorem

is then proved. ¤

Lemma. Let fi and aij , 0 ≤ i, j ≤ n, be non-zero elements of a field E. If each

set {ai0f0, ai1f1, ..., ai,nfn}, 0 ≤ i ≤ n, is linearly dependent over a subfield F of

E, then the set {Πn
i=0aiσ(i)| σ ∈ Sn} is linearly dependent over F .

Proof. See [Wa3].

3. The explicit bound for number fields

The proof of Theorem 1 can be adapted to the number field case directly. How-

ever, the S-unit theorem for number fields only provides an explicit bound on the

number of S-unit solutions. Therefore, our method can provide explicit bound on

the number of (S,H)-integral points, but can not say anything about the abc esti-

mate. Let F be a number field of degree d. Denote by MF as the set of valuations

of F and by M∞ as the set of archimedean valuations of F . We first recall the

S-unit theorem by Schlickewei [Sc]:

Theorem (Schlickewei). Let a1, ..., an be nonzero elements of F . Suppose that

S is a finite subset of MF of cardinality s, containing M∞. Then the equation

a1x1 + · · ·+ anxn = 1 (16)

has no more than

(4sd!)236nd!s6
(17)

solutions in S-units x1, ..., xn such that no proper subsum ai1xi1 + · · · + aimxim

vanishes.

When H is nondegenerate to provide an explicit bound on the number of (S,H)-

integral points we can apply the same method in the proof of Theorem 1. Since it
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is completely parallel to the function field case, we will only reproduce the parts

which need the S-unit theorem.

Following the first part of the proof of Theorem 1, we apply the S-unit theorem

to equation (4) in the number field case. Then we showed that the number of the

S-unit solutions ( l2
l1

, ..., lu
l1

) is no more than (4sd!)236ud!s6
. Therefore the number of

li
l1

, 2 ≤ i ≤ u, which satisfies (4), is no more than

(4sd!)236ud!s6
.

Again if the dimension of the vector space spanned by L1, ..., Lu over F is n+1, then

without loss of generality we may assume that L1, ..., Ln+1 are linearly independent

over F . Therefore the number of (S,H)-integral points is equal to the number of

(1, l2
l1

, ..., ln+1
l1

) which is bounded by

(4sd!)n236n(n+1)d!s6
. (18)

If the dimension of the vector space spanned by L1, ..., Lu over F is less than n+1,

then we can repeat the method in Theorem 1 and establish the same bound (18)

for the number of (S,H)-integral points. Therefore, together with Ru’s result (cf.

[Ru]) we have the following

Theorem 3. Let F be a number field of degree d. Suppose that S is a finite subset

of MF of cardinality s, containing M∞. Let H be a set of hyperplanes in Pn(F ). H
is nondegenerate if and only if the number of (S,H)-integral points of Pn(F )−H is

finite. Furthermore, the number of (S,H)-integral points of Pn(F )−H is bounded

by

(4sd!)n236n(n+1)d!s6
.

4. A generalization of the Picard’s theorem

A complex space M is called Brody hyperbolic if every holomorphic curve f :

C→ M is constant. Ru proved the following (cf. [Ru]).

Theorem (Ru). Let H be a set of hyperplanes in Pn(C). Then Pn(C) − H is

Brody hyperbolic if and only if H is nondegenerate over C.

In [Wa4] we extended the classical Picard’s theorem to the case where the coef-

ficients of the linear forms corresponding to H are holomorphic functions. In this

section we will improve the results by adapting the proof of Theorem 1.

First, we explain our notation and terminologies. Let Li(z)(X) =
n∑

j=0

gij(z)Xj ,

1 ≤ i ≤ q, z ∈ C, where gij are holomorphic functions and for each i, gi0, ..., gin
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has no common zeroes . Denote by Hi(z) = {(x0, ..., xn) ∈ Pn(C)| Li(z)(x0

, ..., xn) = 0} as the corresponding moving hyperplane of Li(z), 1 ≤ i ≤ q, z ∈ C,

and let H(z) = {H1(z), ..., Hq(z)}. Let f0,...,fn be holomorphic functions without

common zeroes. We say that a holomorphic map f represented by (f0, ..., fn) is a

holomorphic map omitting H(z) if Li(z)(f0(z), ..., fn(z)) 6= 0 for each z ∈ C and

i = 1, ..., q.

Denote by Hol(C) as the ring consisting of all holomorphic functions on C, and

Mero(C) as the field consisting of all meromorphic functions on C. One can iden-

tify Hi as a hyperplane in Pn(Hol(C)). Then L = {L1, ..., Lq} can be identified

as a set of linear forms with holomorphic functions as coefficients. Suppose that

the set {Li1 , ..., Lim
} is linearly dependent over Mero(C) and any proper subset

of {Li1 , ..., Lim
} is linearly independent over Mero(C). Then we have a minimal

relation

ai1Li1(X) + · · ·+ aimLim(X) ≡ 0, (19)

where aij is a nonzero holomorphic function and ai1 , . . . , aim has no common zeros.

Definition. H is said to be unitary related if every holomorphic function aij which

appears in any of the minimal relations (19) has no zero.

We also need the following Unit Theorem which is a consequence of the Borel’s

Lemma.

Unit Theorem. Let u0, ..., um be holomorphic functions without zeroes and u0 +

· · ·+ um = 1. Suppose that no proper subsum u0 + · · ·+ um − 1 = 0 vanishes, then

u0, ..., um are all constants.

The main result in this section is the following.

Theorem 4. Let Li(z)(X) =
n∑

j=0

gij(z)Xj , 1 ≤ i ≤ q, z ∈ C, where gij are

holomorphic functions. Denote by Hi(z) the corresponding moving hyperplane of

Li(z), 1 ≤ i ≤ q. Let H = {H1, ...,Hq} be unitary related. Then H is nondegenerate

over Mero(C) if and only if there exist finitely many (n + 1) × (n + 1) invertible

matrices with holomorphic functions as entries such that every holomorphic map

omitting H(z) multiplied by one of the matrices is constant. In addition, this set of

matrices depends only on the hyperplanes and can be determined effectively.

Proof. Since the proof is completely parallel to the proof of Theorem 1, we will

only reproduce the necessary parts. Let f0,...,fn be holomorphic functions on C
without common zeroes and (f0, ..., fn) represents a holomorphic map f into Pn(C)

omitting H(z). Let li = Li(f0, ..., fn). From (19) we have (after rearranging the



P n MINUS HYPERPLANES 13

index) the following unit equation

1 +
a2l2
a1l1

+ · · ·+ aulu
a1l1

= 0, (20)

where no proper subsum vanishes. Then by the Unit Theorem, we have aili
a1l1

,

1 ≤ i ≤ u, is constant. The argument in the proof of Theorem 1 shows that

there exist (after rearranging the index) {L1, ..., Lw} ⊂ L and holomorphic units

b1, ..., bw, c1, ..., cw such that dim(L1, ..., Lw)K = n + 1, and bili
cil1

, 1 ≤ i ≤ w, is

a nonzero constant. In addition, bi and ci , 1 ≤ i ≤ w, are coefficients of some

minimal relations as (19). Therefore there are only finitely many such holomorphic

units. After rearranging the index, we may assume that L1, ..., Ln+1 are linearly

independent over Mero(C). Hence (f0(z), ..., fn(z)) multiplied by




g10(z), b2
c2

g20(z), . . . bn+1
cn+1

gn+1,0(z)
...

. . . . . .
...

g1n(z), b2
c2

g2n(z), . . . bn+1
cn+1

gn+1,n(z)


 (21)

is constant in Pn(Hol(C)). Since L1, ..., Ln+1 are linearly independent over Mero(C)

and bi, ci are units, the matrix in (21) is invertible. It is also clear from the proof

that the matrices used in (21) can be determined effectively and the number of the

matrices is finite.

Conversely, if H is not nondegenerate over Mero(C), we assume that there exist

finitely many (n + 1) × (n + 1) invertible matrices with holomorphic functions as

entries such that every holomorphic map omitting H(z) multiplied by one of the

matrices is constant. In the following proof, we refer to [Rub] for some basic results

and definitions of Nevanlinna theory. Let f(z) be a holomorphic function such that

its characteristic function grows much rapidly than the characteristic function of

the entries of the above matrices, i.e.

T (r, a) = o(T (r, f)),

for every entry a(z) of the above matrices. Since H is not nondegenerate over

Mero(C), there exists an H-admissible subspace V of Pn(Mero(C)) of projective di-

mension greater than or equal to one such that H∩V does not contain at least three

distinct hyperplanes in Pn(Mero(C)) which are linearly dependent over Mero(C).

We may assume, without loss of generality, that V = Pn(Mero(C)). Let H =

{H1, ..., Hq}. Then q ≤ n+1 and H1, ..., Hq are linearly independent over Mero(C).

We may assume that H1, ..., Hq are the first q coordinate planes. Let exp[n]f(z) is

the function defined recursively by exp[1]f(z) = ef(z) and exp[j+1]f(z) = eexp[j]f(z).

Then the holomorphic map represented by (1, exp[1]f(z), exp[2]f(z), ..., exp[n]f(z))
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omits H(z). If A = (aij) is one of the above matrices such that the product with

this holomorphic map is constant, then

mβ

n∑

j=0

aαj(z)exp[j]f(z) = mα

n∑

j=0

aβj(z)exp[j]f(z), (22)

where 0 ≤ α, β ≤ n, mα and mβ are constant. Since T (r, aij) = o(T (r, f)) and

T (r, exp[j]f) = o(T (r, exp[j+1]f)), (22) implies that

mβaαj = mαaβj , (23)

for 0 ≤ j ≤ n. Therefore, the determinant of the matrix A is zero which contradicts

the assumption that A is invertible. Therefore the proof is completed.
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