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Introduction?

Toward the end of the semester I assigned the following. . . . As usual, the class broke into groups
to work on the problem. One group became the staunch defenders of one conjecture, while a second
group lobbied for another. The two groups argued somewhat heatedly, with the rest of the class
following the discussion. Finally, one group prevailed, on what struck me as solid mathematical
grounds. As is my habit, I did not reveal this but made my usual comment: “OK, you seem to have
done as much with this as you can. Shall I try to pull things together?” One of the students replied,
“Don’t bother. We got it.” The class agreed. (Schoenfeld, 1994, pp. 63-64)

Two main goals of Alan Schoenfeld’s problem solving course are illustrated by
this anecdote: That the class function as a “mathematical community” advancing
and defending conjectures and proofs on mathematical grounds, and that the
locus of authority be the “mathematical community,” not the teacher (Schoenfeld,
1994, p. 65). Such incidents are not common in undergraduate mathematics
classes, whether they are composed of elite mathematics majors or students
struggling through their first calculus course. All too often students seem passive,

disengaged, and untroubled by contradictions in their work.

After twelve or more years of schooling, most undergraduates have well-
developed expectations for mathematics classes based on their many experiences of
listening, taking notes, and learning procedures to solve standard problems. In
order to establish his “classroom community,” Schoenfeld must convey his
nonstandard expectations for behavior and at the same time convince his students
that he knows what he’s talking about, that his course is of value, and that
heuristics as well as formalism are essential parts of doing mathematics. In other
words, Schoenfeld must renegotiate the “didactic contract” (Brousseau, 1986) with
his students. This contract includes, among other things, teachers” and students’
understandings of what is to be expected in the classroom: “What assistance can
the students reasonably expect from the teacher; what assistance can the students

seek from each other; what level of explanation is the teacher obliged to provide;
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what questions can the teacher reasonably ask; what form of response will be
considered satisfactory” (Clarke, 1995 April).

Schoenfeld’s situation is an instance of a more general problem: If a course differs
radically from students” previous courses, how can its instructor convince students
that the course is worthwhile and convey expectations for classroom behavior?
This problem is often encountered by those who teach first-year undergraduate
courses. It is also faced by teachers of reformed calculus courses (Cipra, 1995;
Culotta, 1992; University of Michigan, 1993). Students are uncomfortable with
changed teaching and expectations. At some universities this discomfort has
brought calculus reform to a halt (Cipra, 1995, p. 19).

Like Schoenfeld, some instructors have solved the problem of how to establish
desired classroom norms. Others have noted it, but not yet developed a solution.
Those new to teaching may not be aware the problem exists. We think that our
description of Schoenfeld’s solution will be of interest to people in each of these
categories and present this account, not as a prescription to be followed, but as an
example that might illuminate aspects of the difficult task of mathematics
teaching.

We also hope to suggest an analytic way in which to talk about teaching and
attempt to make salient considerations that are sometimes overlooked. Instead of
describing selected incidents from the class or characterizing Schoenfeld’s
“teaching style,” we focus on making sense of all the teaching actions at the
beginning of the course, describing actions in detail as well as providing a
rationale. Our account offers a method of description as well as the description
itself.

In the fall of 1990, Schoenfeld taught his undergraduate course Mathematical
Problem Solving in the mathematics department of the University of California at
Berkeley. The course is designed to provide students with an introduction to what
it means to think mathematically. It is an elective course. The prerequisite is one

semester of calculus or consent of instructor.

In order to build an empirical base for his own in-depth analysis of the course,
Schoenfeld asked the first author (who had already attended this class at Berkeley
in 1987) to videotape each of the 29 two-hour class meetings. The first author
attended and videotaped each class session, and the other three authors also



attended numerous class sessions. All four authors were members of Schoenfeld’s
research group? at the time, and they became interested in the same question: How
does Schoenfeld create a classroom community of problem solvers in which

undergraduates learn to think and do mathematics?

This question shapes our analysis. We focus on the initial stages of the
community, using the videotape records of the first two class sessions as the
principal data. Other data include the remaining 27 videotapes, interviews with
students after the class ended, audiotaped discussions with Schoenfeld, and
Schoenfeld’s writings. To understand the emergence of this community, we
examine how Schoenfeld understood and made the connections between his
mathematics classroom and the professional community of practicing
mathematicians; how he stated and enacted his expectations for student
participation; how he introduced students to desired forms of mathematical
discourse and activity; and how he introduced heuristics in the context of specific

problems.

At this point it is important to delimit the scope of this paper.

e It is not our intention to describe, compare, or ignore the design and
implementation of successful mathematics classroom practices. We
believe that there are many such practices, but we decided to concentrate
on this one because we were fortunate enough to observe, analyze, and
discuss it in depth. We hope this example will encourage other researchers

to offer similarly detailed accounts of mathematics teaching and learning.

* We do not analyze the success of the course. This has been documented:
Students learn to use heuristics successfully (Schoenfeld, 1982; 1985) and
the class becomes a “mathematical community” (Schoenfeld 1989a; 1991;
1992a; 1992b; 1994).

* We do not provide an analysis of how the classroom evolved over the
semester, how students participated, how they learned, how they changed
from being rather silent to being very involved. We decided to focus on
Schoenfeld’s teaching at the very beginning for two main reasons: first, the

analyses suggest some very interesting and counter-intuitive findings

25choenfeld’s research group, the Functions Group at the University of California at Berkeley, has been involved
since 1985 in a series of research and development studies of mathematical teaching and learning,.
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about the initial stages of such a class; and second, if continued through
the remaining 54 hours of tape, the analyses would result in a long book

rather than a long article.

As one might expect, data in the form of videotapes and interviews require
methods of analysis different from those used to examine data that are more
uniform and manageable. Our analytic method, often known as microanalysis, has
roots in cognitive science and ethnography. Schoenfeld, Smith, and Arcavi (1993)
describe it as striving “for explanations that are both locally and globally consistent,
acounting for as much observed detail as possible and not contradicting any other
related explanations.” (For general discussion of this method, see Schoenfeld, 1988;
Schoenfeld, Smith, & Arcavi, 1993; Schoenfeld, 1992b. For discussion of related
methods in the analysis of teaching, see Schoenfeld et al., 1992; Schoenfeld,
Minstrell, & van Zee, 1996 April.)

After our initial collaborative analysis of the first two videotapes, each author
selected instructional segments from those tapes to analyze in detail. Each analysis
was discussed with the other authors. The results are the four main sections of this
article. Though we share a common interest in mathematics education, our
backgrounds are different enough for us to provide a multilayered view of the
class. Arcavi has a Master’s degree in mathematics and a Ph.D. in mathematics
education. He has taught secondary school mathematics for 10 years, in teacher
education programs for 10 years, and has been involved in curriculum
development and research on mathematics teaching and learning for the past 15
years. Meira has a Master’s degree in cognitive psychology and a Ph.D. in
mathematics education. He has teaching experience at the elementary, secondary
and tertiary levels, and has been involved in research on mathematics teaching
and learning for the past ten years. Smith taught upper elementary, middle, and
high school mathematics for 6 years, with a B.A. in mathematics before obtaining a
Ph.D. in educational psychology. His research centers on detailed analyses of
student understanding and learning of precollege mathematics. Kessel has a Ph.D.
in mathematics, taught lower and upper division undergraduate courses as a
teaching assistant, lecturer, and assistant professor for 14 years, and works as a

researcher in mathematics education.

In the first of these sections, An Ouverview of the Problem Solving Course, Arcavi
provides a general description of the goals, curriculum, and pedagogy of the

course, as well as some background on the 1990 class. In the second section
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Presenting and Doing Mathematics: An Introduction to Heuristics, Meira analyzes
how mathematical problem solving was first discussed and enacted. Central to this
analysis are the distinctions among doing mathematics, presenting mathematics,
and presenting how to do mathematics, which Meira uses to examine the complex
relationships among professional mathematics, school mathematics, and
Schoenfeld’s course. Smith’s section Making the Case for Heuristics: Authority and
Direction in the Inscribed Square, focuses on the solution to the second problem of
the course, analyzing how heuristics were introduced and how the students” work
with them was managed. His emphasis on the role of Schoenfeld’s leadership and
authority in the early days of the class, shows how complex and counterintuitive
the initiation of a classroom community can be. In Practicing Mathematical
Communication: Using Heuristics with the Magic Square, Kessel discusses the
third problem of the course, focusing on Schoenfeld’s use of traditional and non-
traditional mathematical language and discourse. Smith’s and Kessel’s sections
discuss different aspects of the complex interplay between teacher authority and
communal judgment, and between traditional and nontraditional elements of
Schoenfeld’s pedagogy. In the Concluding Discussion we summarize what we
consider to be the most important issues arising from these analyses and offer
some implications.



An overview of the problem solving course
Abraham Arcavi

This section describes Schoenfeld's problem solving course, providing the context
and background for the analysis of the following sections. The description includes
his professional background, his goals for the course, the basic characteristics of the
“classroom culture” he wants to create in order to achieve them, the curriculum
and pedagogy, and some details about the 1990 class. The description is based on
our observations of the 1987 and 1990 classes, on personal dialogues with
Schoenfeld, and his written accounts (Schoenfeld, 1983; 1985; 1988; 1989a; 1991;
1994).

Background and goals

Schoenfeld's conceptualization, design and teaching of his course draw upon three
distinct but related fields: mathematics, cognitive science, and college teaching. As
a member of the mathematical community, he has examined the nature of his
own mathematical activity and the practices of the discipline itself (Schoenfeld,
1983; 1985; 1991; 1994). His participation in that professional practice is directly
reflected in his goals for his course. As a cognitive scientist, he has conducted
extensive research on the nature of mathematical problem solving and thinking
(Schoenfeld, 1985; 1987; 1992; Schoenfeld, Smith, & Arcavi, 1993). This research has
provided detailed models of successful (and unsuccessful) problem solving which
have directly influenced his teaching practice. As a teacher of college mathematics,
he designed the problem solving course, taught, evaluated, and revised it over a
period of more than 15 years (Schoenfeld, 1983; 1985; 1991; 1994).

Though most students who take the course are among the successes of the
mathematics education system, they begin the course with very different
expectations and practices from those envisioned by Schoenfeld. In the area of
problem solving, students’” past experiences in mathematics consist mostly of
generating “the answer” to problems by applying procedures for manipulating
numerical and symbolic expressions. They have learned to view the professor
(and/or the textbook) as the sole authorities in the classroom and to defer to this
external judgment on most issues. They have developed an ability to “master”
facts and procedures for exams which are the accepted evidence of their

mathematical competence. However, given problems out of context they may well
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not know when to apply those facts and procedures. Moreover, as Schoenfeld
(1994, p. 43) notes, “For most of them, doing mathematics has meant studying
material and working tasks set by others, with little or no opportunity for

invention or sustained investigations.”

A major goal of Schoenfeld’s problem solving course is to provide his students
with the opportunity to engage in doing mathematics by creating and supporting a
“classroom culture” in which students can solve problems given out of context,
judge the validity of their solutions without appealing to an external authority,
and have the opportunity for invention and sustained investigations. These

aspects of the course are consistent with those of the mathematical community.
Characteristics of the “classroom culture”

The task of creating and nurturing the “mathematics classroom culture” in which
students will have the experience of doing mathematics, has the following

characteristics.

Development of a mathematical point of view. According to Schoenfeld, doing
mathematics is more than acquiring the primary tools (e.g., facts and procedures)
and deploying them thoughtfully in solving problems. It involves looking at the
world with “mathematical spectacles” in a wide variety of problem
situations—using mathematics to symbolize, abstract, model, prove or disprove
conjectures; perceiving connections across problems and results; and creating
knowledge that is new to oneself or to the community. The search for and
discussion of solutions to problems is not the only focus of the activity. Problems
should also serve as springboards for generalization (or specialization), to establish
connections between mathematical domains, to reveal mathematical structure,

and to pose new problems.

Emphasis on processes as well as on results. While emphasizing and honoring
results that are new to the class, Schoenfeld gives greater priority to the reasoning
processes that generated the results. Results that students cannot explain,
regardless of their correctness, power, or appeal, are not valued. Tricks, results
proven elsewhere (“we proved in Math 127 that . .. ”), and “rabbits pulled out of
hats,” are dismissed in favor of presentations of accessible and non-technical

mathematical arguments that presume only what is known by all members of the



community. Explanations of how ideas are generated are highly valued, even

when they do not produce solutions.

Communication. Students” mathematical activity takes place in an inherently
social milieu, where they work as individuals, as members of small groups and as
participants in whole-class activities. The classroom setting encourages and
supports various levels of oral and written mathematical communication: from
expressions of raw ideas, suggestions, intuitions, or insights to top-level
descriptions of mathematical arguments and also final, polished, and airtight
mathematical presentations. Students are encouraged to evaluate, question, and
criticize each other’s suggestions and work, in both small-group and whole-class
activities. Schoenfeld plays a strong role in shaping this communication, ensuring
that students criticize the mathematics rather than each other (Schoenfeld, 1994).

Leadership and authority. As the established leader of this community,
Schoenfeld's task requires both a detailed overall design and a continual day-to-
day shaping. He sets the top-level goals, selects the initial problems, directs
students” work on those problems, models desirable mathematical actions and
dispositions, and consults with individuals and groups of students. He states his
goals openly and explicitly relates them to specific teaching actions and decisions.
However, his intention is to gradually transfer the locus of authority and
community leadership from himself to the students as they become more
comfortable with him and the class. He starts by deferring to students in
evaluating the validity of proposed solutions. He asks them to question and
challenge any hidden or explicit parts of mathematical arguments that are
unconvincing, unclear, or based on implicit knowledge not shared by the whole
class. Schoenfeld leads the class towards assuming responsibility for safeguarding
standards, for what can be accepted as “basic” shared knowledge and for the
completeness, coherence, and conviction of mathematical arguments. He does so
by asking very direct questions and by providing initial modeling of desirable
actions.

Though he expects students to play a substantial role in setting the mathematical
agenda, in presenting their thinking, and in evaluating each others” arguments, he
reserves the right to encourage the class in certain directions and not others. He
describes this as follows:



I know what fruitful directions are that students are likely to [engage in], or
can be nudged into, and on the basis of my general sense of what’s
mathematically valuable, I'm going to try, without letting the students
know it, to nudge the conversation in the direction of things which I
consider important, giving enough latitude to go where they think it’s right.
It’s clear that that works in the sense that, in a number of classes they’ve
discovered mathematics which I didn’t know, it was good mathematics . . .
on the other hand, I am nudging away from things that are frivolous, not
necessarily dead ends (because dead ends can be profitable), and I try to do
that in a way which is not terribly overt, but someone who really
understands the mathematics and the goals for my class can clearly pick that
up. (From an audiotaped conversation with Schoenfeld about his course,
May, 1991)

Reflective mathematical practice. Learning to solve problems and think
mathematically requires continuous reflection on the nature of that activity.
Questions that Schoenfeld first asks of students almost routinely, are intended to
play a central role in developing that reflective capability. For example, Schoenfeld
has shown that skillful mathematical problem solving includes the development
of a critical attitude toward mathematical argument: “Is this airtight?,” “Does it
convince me, a friend, an enemy?” (Mason, Burton, & Stacey, 1982; Schoenfeld,
1994), “Am I done with this problem?” Other questions help to develop the
mathematical point of view: “How could this have been done in another way?,”
“How can this result be generalized?,” “Is this result similar to another we have

seen?” and so on.

Later in the course, Schoenfeld also devotes time to develop what he calls
“executive control of students” solution attempts.” Briefly stated, control is “a
category of behavior [which] deals with the way individuals use the information
potentially at their disposal. It focuses on major decisions about what to do in a
problem, decisions that in and of themselves may ‘make or break” an attempt to
solve a problem. Behaviors of interest include making plans, selecting goals and
subgoals, monitoring and assessing solutions as they evolve, and revising or
abandoning plans when the assessments indicate that such actions should be
taken” (Schoenfeld, 1985, p. 27). Schoenfeld nurtures this behavior by asking
students the following questions while they work: (1) “What are you doing?,” (2)
“Why are you doing it?,” and (3) “How does it help you?” (Schoenfeld, 1985; 1988;
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1992a). Schoenfeld suggests that these kinds of questions are slowly internalized
and become an integral part of the students” doing mathematics.

Curriculum

The curriculum of the course consists of a collection of carefully chosen problem:s,
drawn from a wide variety of mathematical domains—including number theory,
Euclidean constructions, cryptarithmetic, calculus, algebra, and probability.
Problems are presented to students on sheets distributed in class. In general, each
problem sheet does not have more than one or two problems from the same

mathematical domain.

This aspect of the curriculum addresses one of the main course goals: That
students learn how to solve problems out of context. In traditional courses,
problems and exercises are often sequenced in such a way that students can easily
find solution techniques. Thus problems are perceived as mere opportunities to
exercise a pre-established and known technique. Schoenfeld deliberately chooses
not to sequence problems from the same mathematical domain consecutively. On
the contrary, whenever he feels a technique or a solution strategy is understood,
he changes the type of problem, even giving examples in which the thoughtless
application of a recently “mastered” technique can lead to error or nowhere. Thus
the sequencing of the problems is consonant with his intention to teach students
to approach problems as professionals do, namely without having explicit cues
about the techniques to be used. Because of that, to a casual observer, it may seem
that the design of the course has discontinuities and lacks coherence: a result
reached in one class session may not be recalled or invoked until three or four
sessions later when the result is relevant, useful, or connected with the issues

discussed.

Since Schoenfeld is not constrained to “covering” a predetermined amount of
content, he can afford to allocate time flexibly so that work and discussion can
yield the maximum mathematical profit. Problems which can be solved in
minutes with traditional “show and tell” teaching are worked on and discussed as
long as they have mathematical substance, fulfilling one of the main course goals:
That students have the opportunity for invention and sustained investigations.

What are problems and how are they chosen? Are there any criteria for good
problems? Schoenfeld regards problems as demanding, non-routine and
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interesting mathematical tasks, which students want and like to solve, and for
which they lack readily accessible means to achieve a solution (Schoenfeld, 1985;

1989a). Problems selected for the course must satisfy five main criteria (Schoenfeld,
1994).

» Without being trivial, problems should be accessible to a wide range of
students on the basis of their prior knowledge, and should not require a
lot of machinery and/or vocabulary.

* Problems must be solvable, or at least approachable, in more than one
way. Alternative solution paths can illustrate the richness of the
mathematics, and may reveal connections among different areas of
mathematics.

* Problems should illustrate important mathematical ideas, either in terms
of the content or the solution strategies.

* Problem solutions should be constructible without tricks.

* Problems should serve as first steps towards mathematical explorations,
they should be extensible and generalizable; namely, when solved, they

can serve as springboards for further explorations and problem posing.

A main topic in Schoenfeld's curriculum is, as already implied, heuristics—“rules
of thumb for successful problem solving, general suggestions that help an
individual to understand a problem better or to make progress towards its
solution” (Schoenfeld, 1985, p. 23). Commonly used heuristics include: exploiting
analogies, examining special cases, arguing by contradiction, working backwards,
decomposing and recombining, exploiting related problems, generalizing and
specializing, and relaxing conditions in the problem (see Pélya, 1973 for a more
complete list). The rationale for teaching heuristics is clear: expert problem solvers
develop and rely on these strategies to make progress on difficult problems. Thus
if heuristics can be taught, they may help students become better problem solvers.

Indeed, this hypothesis (among others) led Schoenfeld to develop the course.

Researchers in mathematics education have not found it easy to teach heuristics in
the classroom (e.g., Lester, Garofalo, & Kroll, 1989). Schoenfeld has himself
experienced difficulty at the college level. In his early work teaching problem
solving, he identified three main complications in the task of teaching heuristics
(Schoenfeld, 1985).

12



* The specificity problem. If heuristics are presented in their most general
(and useful) form, students will be unable to apply them; if they are given
in more context-specific forms, their number explodes and only some can
be taught.

® The implementation problem. Applying heuristics requires many steps,
and therefore creates many opportunities for students to make fatal errors.

* The resource problem. To be successful, students must know both the
appropriate heuristics and the mathematics required to solve the problem.

In his continuing development and revision of the course, Schoenfeld has had to
address each of these problems. A major goal of this paper is to understand his
approach.

Effect

Schoenfeld has discussed the course many times (see [Schoenfeld 1983; 1985; 1988§;
1989a; 1991; 1994] for the most substantive discussions). Some accounts have been
descriptive introductions built around vignettes: rich snapshots of the class
working on particular problems, such as the magic square (Schoenfeld, 1989a; 1991)
or Pythagorean triples (Schoenfeld 1988; 1991; 1994). These accounts suggest that
his students are engaged in more productive sorts of mathematical thinking and
activity than are typical of most undergraduates.

Students work collaboratively in groups with or without Schoenfeld's
presence—indicating engagement and commitment to the enterprise. They stop
looking to him to evaluate the validity of their arguments, turning instead to their
peers. They produce results that are new to them, surprising and interesting to
Schoenfeld, and occasionally publishable (Schoenfeld, 1989b). And most
important, they learn to use heuristics effectively over a range of problems,

considering, pursuing, and monitoring multiple approaches.

Schoenfeld examined students” problem solving performance before and after the
course using measures which ranged from paper-and-pencil tests to analyses of
problem-solving protocols (see Chapters 7, 8, 9, and 10 of Schoenfeld, 1985). His
results showed that students who completed the course (1) used a variety of
heuristics effectively to solve challenging problems; (2) had a better sense of how
to proceed and were less likely to “plunge in” with the first approach that came to
mind; (3) saw through the surface features to the deeper mathematical structure of
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problems; and (4) used heuristics to solve problems unlike those they had worked

previously in the course.

On the first day of class, Schoenfeld described one of the measures he used in his

analysis:

I gave an in-class final, and there were three parts to the final exam. The
tirst part was problems like the problems we solved in class. No surprise,
you expect people to do well on those. The second part was problems that
could be solved by the methods that we used in class—but ones for which if
you looked at them you couldn't recognize that they had obvious features
similar to the ones that we'd studied in class. So yes, you had the tools and
techniques, but you had to be pretty clever about recognizing that they were
appropriate. And, the class did pretty well on those too. Part three of the
final exam . . . There's a collection of books called the Hungarian Problem
Books which have some of the nastiest mathematical problems known to
man and woman. I went through those, and as soon as I found a problem I
couldn't make any sense of, whatsoever, I put it on the final. (I know that
makes you feel good.) [Laughter from class, Schoenfeld smiles.] The class did

spectacularly well, and actually wound up solving some problems I didn't....
Pedagogy

In the versions of the course we observed (1987 and 1990), the class was organized
into six principal modes: lectures, reflective presentations, student presentations,
small-group work, whole-class discussions, and individual work. In the first two
class sessions all six modes occurred, although not exactly in the same proportions
as throughout the semester. On the first day of the course Schoenfeld described
these modes to the students:

Most days I'm going to walk in . . . and hand out a bunch of problems. I've
got enough here to probably keep us busy for two days or so. And what
you're seeing here is unusual, because you won't be seated in rows watching
me talk. Instead you're going to break into groups of three or four or five,
and work on problems together. As you're working on them, I'll circulate
through the room, occasionally make comments about the kinds of things
you're doing, respond to questions from you. But, by and large, I'll just

nudge you to keep working on the problems.
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Then at some point I'll call us to order as a group, and we'll start discussing
the things that you've done, and talk about the things that you've pushed
and why; what's been successful, what hasn't. I'll mention a variety of
specific mathematical techniques as we go through the problems. Many of
the problems are chosen so that they illustrate useful techniques. So you'll
work on one for a while; may or may not make some progress; and then
we'll talk about it. And as we talk about it what I'll do is indicate some of
the problem solving strategies that I know, and that are in the literature,
that might help you make progress on this problem, and progress on other
problems.

Lectures. In contrast with most college classrooms, the lecture mode occurred
relatively infrequently. When Schoenfeld lectured, the lecture segments were
relatively short and oriented toward particular goals: to provide background on
mathematical resources needed to make progress (e.g., mathematical induction), to
introduce heuristics, and to describe his goals for the class. He did not generally
present his own solutions to problems, except on the occasion that an important
solution was not developed by the class. Because his lecture segments were short,
pointed, and related to activities in other modes, many of the traditional effects of
the lecture—e.g., student passivity and disengagement—were not evident. (More
details are provided throughout the following sections by Meira, Smith and
Kessel.)

Reflective presentations. In this mode, Schoenfeld presented mathematical
commentaries to the class, interpreting segments of activity just completed and
highlighting important aspects. We characterize them as “reflective” because they
directed students” attention to mathematically significant features of either
Schoenfeld’s or his students” actions. They differed from lectures because they
engaged students as participants. They were unlike whole-class discussions because
Schoenfeld pursued specific goals and directly controlled the flow. Reflective
presentations took quite different forms: e.g. modeling a problem solution to
illustrate a particular heuristic, to demonstrate a specific mathematical point, or to
highlight executive control in problem solving; recounting, and highlighting
aspects of students” presentations of their solutions; conducting “post-mortem”
reviews of complete problem solutions (see Schoenfeld, 1983 for a specific
example). Like lectures, they all involved significant forms of teaching by telling;
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i.e., substantive insertions of content into the classroom discourse (Ball & Chazan,
1994), but occurred in the broader context of problem solving. They provided
students with a clear view of the reflective mathematical practices of a skilled

mathematician, an opportunity that is absent from many college classrooms.

Student presentations. At appropriate junctures, students were invited to present
their solutions to assigned problems. During these presentations, Schoenfeld
avoided giving immediate verbal feedback and non-verbal evaluations of student
success, though students initially expected such judgments (see Smith’s analysis of
the inscribed square problem). With a blank “poker-face” he usually addressed the
class with one of the following questions: “What do you guys think?,” “Does the
class buy this argument?,” or “Are you convinced?” These questions were
routinely posed after each presentation to signal that students should not wait for
an external authoritative judgment. Student presentations also provided
opportunities to work on issues of mathematical exposition and communication;
such as top-level descriptions of an argument vs. more polished and detailed
versions, comparing formal/symbolic and informal presentations, contrasting

convincing arguments with “hand-waving.”

Small-group work. About 30% of each class was devoted to work in small groups
of two to four students. Its purpose was to provide a stable and continuous context
for students to engage collectively in problem solving. In the best of cases, this
collaborative work generated negotiation among the members of the group about
approaches to pursue, allowed each student to calibrate his/her own
understanding of the mathematics involved with the other group members, and
promoted the disposition to listen to and learn from peers. In this mode,

Schoenfeld played the role of “traveling consultant” and critic.

Whole-class discussions. After an individual presentation or small-group work,
Schoenfeld often engaged the class in collective discussion. Sometimes the class
attempted to solve a problem as a whole group, and, as in the small-group work,
Schoenfeld usually avoided immediate evaluation of the usefulness of the
approach suggested by students, even when the approach could lead to a dead end.
This mode had several purposes: it allowed all students to listen to each other's
questions, comments, and solution attempts. As students started to feel more
comfortable with the class, it slowly became a forum in which they could openly
voice misunderstandings and/or requests for mathematical resources invoked by

some and lacked by others. There were occasions later in the course in which the
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whole-class discussion also dealt with issues of mathematical elegance and

aesthetics.

Individual work. Students had many opportunities to work individually before,
within, and after some of the modes described above. However, individual work
was the main mode for homework assignments, and the two take-home exams,
on which students worked for about two weeks with the promise of not consulting
each other. Individual work consisted not only in solving problems, it also
included, as mentioned above, preparation for communication of results, either to
a small group, the whole class, or (in the case of the written take-home exams) the
teacher.

Students received specific guidelines about exams and grading. On the first day of
class Schoenfeld told the students:

[A] week or two into the class I'll give you the opportunity to write out a
problem or two for me so that I can get a sense of the kind of writing you do,
and give you some feedback on the kind of writing I expect. The first main
thing we do is: about half-way through the course I'll give you a two-week
take-home. It'll consist of about ten problems and they will occupy you for a
long time. But you'll make progress on them and you'll do reasonably well
on them. And then, the final. Again, the department formally requires me
to give an in-class final, so I usually wind up giving a one-problem in-class
final to meet the rules and regulations. That's about ten percent of the final
exam grade. The rest of it is another take-home that you'll have two weeks

to work on. There are some funny rules, which are that:

What counts is not simply the answer, what counts is doing mathematics.
And that means, among other things, if you can find two different ways to
solve a problem, you'll get twice as much credit for it. If you can extend the
problem and generalize it and make it your own, you'll get even more. The
bottom line is, I'd like to have you doing some mathematics and I will do
everything I can—including using grading—as a device for having you do
that.
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The 1990 class
Students

Mathematical Problem Solving, listed in the university catalog as Math 67, is not a
required course for any major. The course prerequisite is one semester of calculus

or consent of instructor.

The students in the first two classes had a wide range of mathematical
backgrounds (see Table 1). For example, Jeff,® a history major, had taken one
semester of calculus three years ago, and Diane, a genetics major, had taken the
calculus sequence. In contrast, Mitch was a graduate student in computer science,

and Jests, a fourth year applied math major.

In the first week, the “traffic” in and out of the class was relatively heavy; students
were shopping for classes and adjusting their schedules. The university catalog
had also listed the course as beginning one hour later than it did, thus adding to
the traffic. Thirteen students attended all or part of the first session. Three new

students entered in the second session.

The eight students who completed the course were all enrolled for credit. Six were
majors (or intended majors) in mathematics or computer science. Only one of

these students (Jeff) had a major outside of science, mathematics, and engineering.
Only one was female. The group comprised four European Americans, two Asian

Americans, and two Hispanics.

Brief overviews of the first two class sessions

Session #1. For the first twenty minutes Schoenfeld introduced the course: its
history, its basic mechanics, the grading system (a complete transcript is given in
Appendix A). He then distributed the first set of problems and asked students to
start working on them in groups. For the next twenty minutes most groups
worked mainly on the first two problems: finding the sum of the telescoping series
and inscribing a square in an arbitrary triangle. Forty minutes into the class,

Schoenfeld called the class back and, for about twenty-five minutes, he discussed

3All students are referred to by pseudonyms.
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Table 1

Background of Students Participating in Sessions 1 and 2

Student Origin of Interest; Entry Background
Austin | Saw description in the catalog Third-year computer science major
Looking for such a course “for years” Calculus sequence, discrete math
Entered at start of Session 2 Audited one class of Putnam? course
Devon | Saw description in the catalog Third-year student with interests in math and computer
Entered at start of Session 1 science; part-time: Math 67 only course
Older student, recent transfer to UCB
Don Saw description in the catalog Math major
Entered at start of Session 1 Calculus sequence plus 4 upper division courses
Jeff Saw description in the catalog Fourth-year history major; goal: teach history and math
Entered at start of Session 1 One semester of calculus as first-year student
Jests Saw description in the catalog Fourth-year applied math major
Entered at start of Session 1 13 math courses
Sasha | Saw description in the catalog First-year student, intending computer science major
Entered at start of Session 1 Calculus, discrete math, Putnam course
Math camps & 3 high school competitions
Stephen | Looking for some “easy units” Physics major
Entered at start of Session 1
Diane | Looking for a “fun class” Genetics major, calculus sequence
Attended Sessions 1 and 2 Liked problem solving
Richard | Attended Sessions 1 and 2 Computer science major, part-time student
Calculus sequence, 1.5 years before
Worried about “rusty background”
Mitch | Read about the course Graduate student in computer science
Entered at start of Session 1, auditing Calculus sequence, discrete math, linear and abstract
algebra
Sharon | Heard about Schoenfeld via family member | Varied academic background; intending math major;
Attended Session 1 only, auditing Calculus, logic, and statistics;

the telescoping series problem. This discussion is analyzed in detail in Meira's

section.

4The William Lowell Putnam Mathematical Competition is administered annually in December by the Mathematical
Association of America to students who have not yet received a college degree (Reznick, 1994, p. 19). Neither of the
students who attended the Putnam course (H90, Honors Undergraduate Seminar in Mathematical Problem Solving,
also offered in the fall of 1990) mentioned taking the Putnam exam though they were interviewed early in 1991.
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The students then went back to work in their small groups, and Schoenfeld
moved around the class monitoring the work of each group. He discovered that
some groups did not fully understand the written statement of the inscribed
square problem, so he explained the distinction between showing that the required
square exists and giving a construction. Approximately one hour and twenty-five
minutes into the session, Schoenfeld again called the class back to a whole-class
discussion of this problem which was interrupted when the class period ended.
Students left class with instructions to think about the problem at home.

Session #2. Schoenfeld began by emphasizing the importance of working as a
community and presenting results to one’s peers. Upon request, one student
volunteered to present his constructive proof that a square can be inscribed in an
arbitrary triangle. His argument was fundamentally sound, but directed almost
entirely to Schoenfeld who was standing at the side of the room. Schoenfeld noted
this deference and explained that the class must become the judge of mathematical
validity of proposed solutions. The student then addressed the class more directly,
repeating his solution with slightly more detail. This discussion lasted twenty-five
minutes. Smith analyzes in detail the way in which Schoenfeld directed the
discussion on this problem.

Schoenfeld then drew students” attention to the third problem of the set, placing
the integers from 1 to 9 to make a 3 by 3 magic square. Another student
volunteered to present his solution, and its correctness was immediately apparent.
The next forty minutes were spent in discussion of different solution paths that
could produce the same result. Schoenfeld led this discussion, involving students
in substantive ways and introducing many new heuristics. Kessel analyzes this

discussion in detail.

The final fifteen minutes of the session were devoted to quick solutions of the
next problems in the set, which will not be discussed in this paper. In sum, the
next three sections of this paper cover most of the whole-class instructional
episodes of the first two two-hour class periods.
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Presenting and doing mathematics: An introduction to heuristics
Luciano Meira

Solving problems is a considerable part of what mathematicians do, and learning
to solve problems is part of learning to think mathematically. Shaping the culture
of the classroom so that his students learn to think mathematically is the heart of
Schoenfeld’s teaching enterprise. Therefore his central goal is to create a classroom
community which embodies selected values, beliefs, and activities of the

professional mathematical community.

But within this parallel, Schoenfeld has also acknowledged the individual and
collective differences between professional mathematicians and the students

taking his course.

The class itself is a mathematical community (better, a micro-community in
which certain mathematical values are highly prized) in which the students
interact with each other in ways very much like the ways that
mathematicians interact—but at a level appropriate to their knowledge and
abilities. At their own level the students are mathematicians, engaged in the
practice of mathematical sense-making. They do mathematics, with the
same sense of engagement and involvement. The difference is that
boundaries of understanding that they challenge are the boundaries of their
own (community’s) understanding, rather than those of the mathematical

community at large. (Schoenfeld, 1988, author’s emphasis)

His characterization of the relevant differences centers on issues of mathematical
background. Students’ views of problems and significant results reflect their own
understanding, which is substantially more limited than professional
mathematicians’. But are the differences between these two communities only a
matter of what constitutes shared knowledge and problems at the edge of
collective understanding? We think not, especially in the first sessions of the class
when much “shaping” of the community is being done. We propose that there are
other important (and sometimes subtle) differences that follow directly from a
second and equally obvious difference, that the classroom community is
deliberately shaped and “engineered” by Schoenfeld, whereas the professional

mathematical community has no recognized single authority or leader.
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To explore the subtleties of these differences, we introduce the distinction between
“presenting” and “doing” mathematics. “Doing mathematics” means engaging in
reasoning that reflects the thinking of mathematicians: resourcefully tackling and
making progress on hard mathematical problems. In order to bring students to the
point where they can approximate mathematical doing, some “presenting” must
take place, in both traditional and less traditional forms. As will become evident
below, we use “presenting” to characterize different acts of teaching, though all
forms involve the display of some mathematical concept or part of mathematical
practice for students.

The contrast between doing and presenting mathematics is enacted by Schoenfeld
during work on the first problem, summing the telescoping series. We analyze
this contrast in three consecutive segments of class activity: (1) his mock lecture on
the standard solution to the problem, where Schoenfeld critiques a traditional
form of teacher presentation in college mathematics classrooms; (2) his
presentation of a heuristic-based solution as an important part of the practice (the
“doing”) of professional mathematicians; and (3) his lecture on and subsequent

use of mathematical induction to prove that the solution found is general.
Caricaturing mathematics teaching as presenting: The mock lecture

Finding the sum of the telescoping series is a well-known problem, appearing in
most first-year calculus courses. It asks for the sum of the following terms,

1 1 1 1 1
+ + + + ..+
1x2 2x3 3x4 4x5 n(n+1)

In placing this problem first, Schoenfeld’s apparent goal was to demonstrate the
value of heuristics as tools to unpack results which are either unknown or recalled

but not understood.

After some twenty minutes of group work, where students worked on the
telescoping series and other problems in the set, Schoenfeld called the class
together to present a “lecture” on the textbook solution. This was not just any
lecture, but a play that caricatured the “typical” calculus professor presenting the
standard solution to the problem. We quote the transcript at length so that the
content and tone of the play are clear. Note that the goal of differentiating between

presenting and doing mathematics was explicit from the start.
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Let me show you what you were shown, by metamorphosing into the
typical calculus professor for three minutes, and lecturing on the solution to
that problem as it’s typically presented in a calculus class and then talk about
the way it gets done rather than the way that the solution actually gets
presented. Well, I won’t quite be the typical mathematics professor, ‘cause I
won’t mumble at the board [giggles from class] but . . . it goes something like
this. [Schoenfeld walks toward the door, turns, and starts back toward the

board as if he were another person.]

All right. Well, the problem I asked you to look at was find the sum:
[writes rapidly, banging the chalk, on the board and states the formula
simultaneously]

_ 1 1 1 1 1
Z ' _ = + + + ...+ .
S()x(i+1) 1x2 2x3 3x4 n(n+1)

Now, all you need to know is the obvious algebraic observation that [he

writes and speaks simultaneously]

1 1 1

1] —= .
ix(i+1) i i+1

That’s trivial. You can check it algebraically, OK; I don’t waste my time with
such things at the board.

[Writes as he speaks; the italicized text below is what also is written.]

Now that says that 1 over 1 times 2 [he points to in the first formula]

1x2

is equal to

[

1
2/

[A student, perhaps recognizing this, says, “Ah . . . yeah.”]

1 .1 1
is ———,
2x3 2 3
1 .1 1
is ———.
3x4 3 4

[He writes “+ ... +".]
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1 and the last term is l—i
n-1 n n n+l

[The following formula (*) is now on the board:]

The next to the last term is

1 1 1 1 1 1 1 1
(1_5)+(§_§)+(§_Z)+ con (=

1 1
+(=——).
n-1 n) (n n+1)

Got that? [no pause] All right [giggles from class].

Well, now all we need to do is make the observation that [he pushes board>
upon which he has been writing under top board so all but (*) is covered]
I've got minus a half and plus a half next to each other, and they cancel [he
strikes through canceled terms], I've got minus a third and plus a third next
to each other and they cancel, minus a fourth and plus a fourth and they
cancel, this [pointing to the term one nth] cancels with the previous
term—minus an nth plus an nth and they cancel—so the only terms left are

the first one, and the last one, namely 1 over n + 1. [Formula (*) now looks
like:]

1 1 1

1 1 1 1 1 1 1
(1_5)4-(5_5)4-(5_1)4-”' +( ——) (=~

n-1 n n n+l

)

[He pushes the board upon which he has been writing up so it is completely
covered by the board above.] The first one was 1 over 1, minus the last one: 1

overn+1;or...novern+1...[writes formula (1)]
1 n
=1- = .E.D.
n+l n+l Q

Q. E. D. You all know what Q. E. D. stands for, don’t you?
Student: Quod Erat Demonstrandum.

Yeah, the Latin is Quod Erat Demonstrandum, “that which was to be
shown”; the English . . . “Quite Easily Done.” OK.

SThe classroom has a blackboard with three sections. The central section has two panels which slide vertically
over a third fixed panel. Schoenfeld writes the first three formulas on the lower of the two sliding panels, and the
remaining formula (t) on the fixed panel.
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Now, I can do things like that, that’s why I'm a mathematician. We don't
expect you to do things like that but you can memorize them. That’s why

I'm up in front at the board and you’re down there. OK.

End of lecture, see you next time. [He pauses; returns to normal demeanor.]

We take the overall purpose of the play to be straightforward. In acting out an

objectionable teaching practice, Schoenfeld sets the stage for presenting himself

and his course as a new and more positive mathematical experience for students.

We identify the following negative elements in this caricature of “traditional”

teaching:

* The caricatured professor stated the problem exactly as it is printed in the
problem set and began his lecture without any preliminary discussion of
the problem that might engage students in the task. In traditional
mathematics classrooms, the curriculum (problems and solutions) is seen
as uniquely defining the activity.

* He spoke and wrote on the board very rapidly. Such high speed deliveries
have additional inhibitory effects on student contributions, over and
above the standard expectations, among both faculty and students,
implying that interruptions to lectures should be minimized.

* He assumed that the key algebraic reformulation was obvious and never
addressed the source of the insight, suggesting only that students could
undertake the remedial task of “checking” its validity.

* He maintained a haughty and arrogant attitude throughout, but especially
in his implication that his students had seen the solution in calculus but
apparently forgotten it and in his emphasized difference between
professors who know and students who memorize.

* He asked no real questions during the lecture. The two queries posed to
the class were not serious invitations to discussion, since he did not wait
for a student response. These “questions” were merely rhetorical
ornaments in the lecture.

* It was evident from the videotape record that he wrote the key algebraic
steps on panels of the moveable chalkboard but then quickly removed

them from the students” view behind the fresh panels he was sliding into

25



place. On one occasion, he covered a long computation just as he began to

summarize it.

The mock lecture was clearly a set-up, a worst-case scenario of traditional
mathematics teaching practices where teachers “tell” students the facts and
procedures they think are important and students memorize them. Schoenfeld’s
enactment of this caricature communicates at least two related messages to his
class: “I know about your experience with the mathematics teachers, particularly
college professors” and “I will make your experience with me different.” As is
evident from the start, the mock lecture serves as counterpoint between students’
impoverished past experience and the yet-to-be seen, but allegedly real
mathematical practice. What properties of real mathematical practice are
effectively modeled by Schoenfeld in these first sessions of his class? How does he
say that mathematics “gets done”?

Presenting professional mathematical doing

Immediately after the mock lecture, Schoenfeld presented a heuristic-based
solution that “serves as a window into the practice of mathematicians.” He began
by declaring that mathematicians do not solve problems by recalling algebraic

identities, but by applying well-known problem solving strategies:

Now, if I called up any member of the math department at four in the
morning and said, “Hey, your house is on fire but before you leave, what'’s
the sum of this series?” they could tell me because it’s part of the
mathematicians” collective unconscious. If I gave them a slightly more
complicated problem, being mathematicians, they’d probably stop to solve it
before they ran out of their house anyway—they’re a little weird that
way—and what they’d do is not pull a rabbit out of their hat, the way I just
did to solve this one, but rather to use a reasonably, (well, a very) well-
known and quite comfortable strategy to all of them, which is [begins
writing] long-winded, but it’s worth writing down.

[Writes as he speaks; the italicized text below is what also is written.]

If you've got a problem you need to make sense of and it has an—jargon
coming up!—integer parameter n, that is something that takes on values . . .
(whole number values, and I'll be explicit about what that is in a minute) . . .
try values of n =1, 2, 3,4, 5, ... and see if you can find a pattern. That pattern

26



may suggest what the answer is and may even suggest how you can verify
it—if that’s the answer.

This is the strategy. It’s our first official strategy of the course (put it in a box
to make it pretty) [he draws a box around what he’s just written] and
introduces the first serious piece of jargon for the course. It’s called a

heuristic strategy.

[The following is on the board:]

If you've got a problem you need to make sense of and it has an
integer parameter n, try valuesof n=1,2,3,4,5, ... and see if

you can find a pattern.

Heuristic strategy

In our analyses, we will refer to this heuristic as “if a problem has an integer
parameter, try specific values and look for a pattern,” or Try Specific Values for

short.

Schoenfeld was quite explicit about how Try Specific Values could be applied to
this problem. “This [problem] asks for the sum of n terms, and you can ask: What'’s
the sum of the first one, the first two, the first three etc.” He wrote the first four

partial sums and retrieved their results from the class,

1.1

2 2

1 1_2

—t —=—

2 6 3

1. 1.1 _3
et — = —
2 6 12 4

and suggested that the next sum would be 5/6 With the emergent pattern in hand,

he queried the class about verification.
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AS: So at this point, I've seen the pattern, convinced myself on the
basis of a number of examples that it’s probably right. Am I
done?

Sasha: Can you prove your result?

AS: Probably. [He pauses, someone, perhaps Sasha, laughs.] Patterns
can be deceiving, I mean this is pretty compelling evidence. But
we’ll see some examples later this semester where they’re not,
where a compelling pattern doesn’t necessarily come true.
Since this is a math class, I feel a moral obligation to actually
confirm that the pattern holds. How do I do that?

Sasha: Math induction.

Two features of this segment are worth comment. Schoenfeld’s query to the class,
“Am I done?” was his first real question, a serious request for students’
contributions to the solution.t He invited students to collaborate, modeled a
standard move in mathematical thinking where solved problems are beginnings,
not ends, and drew a sharp contrast with the haughty, one-sided nature of his
mock lecture. This question signaled that his own teaching, not the traditional
calculus instructor’s, was beginning. But with this overture to students, he also
explicitly indicated that he had sure command of the course content (some
patterns would deceive) and a ready proof of the pattern of partial sums. In short,
he presented the use of heuristics, a key component of real mathematical activity,
and began to engage the students as thinkers in the real practice of mathematics,

without straying off the path to a complete solution.
Presenting some mathematics

Following Sasha’s suggestion, Schoenfeld asked:

How many of you guys feel comfortable with induction? [pause, students
are not visible or audible on the videotape at this point] OK, let me ask it the
other way: How many of you feel uncomfortable with induction? [pause]
OK, good. [erases blackboard panel, pushes it up] I'm not going to spend too

much time on it in the course but it will occasionally be a useful tool. So I'll

6 Schoenfeld’s requests to students to calculate the partial sums, % + % and % + % + %2 , were not questions

in the same sense. Because students’ knowledge of the addition algorithm for fractions could be assumed, only the
speed of their response—not the content—was an issue.
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give you an example of how it works here and if it turns out to be an issue,

then come talk to me in my office hours and we’ll worry about it then. OK?

He presented the principle of mathematical induction and used it to show that the
emergent pattern in the partial sums holds for all positive integers n. This
exposition was straightforward, except for two important features: his use of a
staircase metaphor to help the students make intuitive sense of induction and his

increasing requests for students’ contributions to the evolving proof by induction.

The general idea of mathematical induction was stated in the standard manner but
also characterized as “the mystical algebraic formulation.” “If you'd like to show
something is true for, in the simplest case, all whole numbers, 1, 2, 3, 4. . . . prove
the statement is true for n = 1 [first inductive hypothesis]; and prove that if it's true

for n =k, then it must also be true for n =k + 1 [second inductive hypothesis].”

To illustrate induction, he drew a staircase on the board and said that, if one were
on any given step of the staircase, the second inductive hypothesis allowed
jumping to the next step, while the first inductive hypothesis allowed one to get
on the staircase.

This [second] part, if it’s true for n =k, then it’s true for n = k + 1, where k
can be anything, is a funny inductive assumption . . . so that’s an
assumption that allows you to jump from the third floor to the fourth floor.
... Now in and of itself, that statement may or may not do you any good. It
simply says, if you've managed to show that it’s true for some value, then
it’s true for the next value as well. . . . The problem is getting on the staircase
in the first place. . . . That’s why you need the first part. . . . You show that if
the statement is true for n = 1, I can get on the staircase. . . . So, that's the two
parts to an inductive argument: first there's the place where you get on the

staircase; second, you can climb one step at a time.

The sum of the telescoping series was then solved for the third time. Schoenfeld
rewrote the problem statement, proved it for the trivial n = 1 case, assumed the
statement true for n =k, and proved it for n = k + 1 by adding the k + Ist term (k +
1) to both sides of the n = k equation and simplifying the resulting algebra. He
requested student contributions many times in building the inductive

assumption:’

"These student(s) could not be identified from the videotape.
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AS: Then what do I want to show?
A student: [Inaudible] prove it’s true for k + 1.
AS: OK, so I assume this is true, what I want to show is: And now
the question is: How do I write this statement for n equals k + 1?
[No response.]
AS: What does the left-hand side of it look like?
A student: The same as [inaudible] but with one more term.
AS: Yeah, it’s going to look the same except the last term is going to
be k + 1, ‘cause I'm doing it for n =k + 1, (k + 1)(k + 2). OK.
So what I want to show is: 1 over 1 times 2, plus—and I'll write
the next to last term—to make life easy for myself. The last
term is 1 over k + 1 [times] k + 2. The next to last term is going
to be what? . . . What'’s the right-hand side going to be if 1 is
equal to k + 1?

A student: k + 1 over. ..

The solution of the telescoping series came to an end with Schoenfeld’s transition

back to the more general application context for Try Specific Values:

When you see an 7, sometimes it’ll be explicit as it is here, sometimes it’ll
be implicit, you just look at it and say to yourself, “Hey, it’s really a problem
that has different values for n equals 1, 2, 3, 4, 5, even though there’s no n in
the problem formulation.” Then, if you need to make progress on it, it often

helps to look for systematic patterns.
Discussion

Our characterization of the telescoping series problem has interwoven two levels
of analysis of Schoenfeld’s teaching. First, we have emphasized the many
introductions he makes in this first session: to his own teaching as different from
other, content-oriented, classes; to heuristic strategies as a crucial component of
problem solving; and to his mastery and expertise both as a teacher and as a
mathematician. But none of these features is surprising, since they are described in
Schoenfeld’s own written accounts of the course (1983; 1985; 1991; 1994).

We believe our contribution consists in providing another level of analysis. We

have used the distinction between “doing” and “presenting” to capture the more
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fundamental connection between his teaching and the practice of mathematicians
that underlies those introductions. Figure 1 presents a model of Schoenfeld’s

teaching with the telescoping series as relationships between doing and presenting

mathematics.
Professional Community Schoenfeld's Classroom Community
Doing mathematics Teaching mathematics
consisis of
Reflective presenting Rhetorical presenting
ﬁ CONFIsis afﬁ
Model of Student
problem solving contributions

I— Suilds loward 4|

Classroom
mathematics doing
Figure 1

Schoenfeld’s pedagogy as doing and presenting mathematics

At the top level, the model distinguishes the practice of mathematicians
(professional “doing”) from teaching. Despite Schoenfeld’s intentions to construct
a classroom community to parallel professional mathematical practice, he was a
“messenger” who modeled professional practice for his students, probably because
he thinks that at the beginning, modeling is a way to help that community to
emerge. In contrast to that professional “doing,” Schoenfeld’s teaching in this
segment of the class involved two forms of “presenting”: reflective and rhetorical.
We characterize his mock lecture as a rhetorical presentation because it was a
skillful performance that he enacted alone to encourage students to follow his lead
in developing contrasting forms of classroom dialogue and practice. His reflective
presentations, as exemplified in his discussions of Try Specific Values and

mathematical induction, were more frequent and characteristic of his teaching
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throughout the course. They involved his modeling of significant parts of skilled
problem solving including both knowledge and decision-making and his

solicitation of student contributions within these goal-directed activities.

We consider them as “reflective” for different reasons. Some presentations
introduced new knowledge (e.g., Try Specific Values) in particular problem
contexts and highlighted for students the importance of thinking when and where
that knowledge can be used again (recall Schoenfeld’s closing comments on Try
Specific Values). The reflection here involved the relationship between
knowledge and the (problem) contexts where that knowledge is applied. In other
cases, he modeled specific actions of a skilled problem solver, e.g., control
questions such as “Am I done?” Reflection there involved an awareness of the
relation between the state of a person’s evolving solution and the problem context.
All such presentations contained (1) an introduction to a necessary “tool of the
trade” in one context, and (2) pointers to how knowledge and skill relate to a wider
range of contexts. The intent of these presentations was to help students carry away

from the course a different form of classroom mathematical practice.

Because they were the places where Schoenfeld presents new knowledge and skill
to students, it is important to contrast reflective presentations with simpler forms
of “transmission” teaching common to college and precollege instruction in
mathematics. Both involve teachers” display of mathematics knowledge and skill
for students who are understood to lack that knowledge and need it to make
further progress. We see elements of transmission in the introduction and use of
Try Specific Values and in the review of mathematical induction. Moreover, the
context and content of Schoenfeld’s reflective presentations differed from
traditional “teaching by telling” as well as “socratic teaching” in significant ways.
In emphasizing process in problem solving, he shifted the focus from
mathematical content to issues of how mathematics is done. His solicitation of
student contributions was a step toward fulfilling the expectation, stated during
the first twenty minutes of the course, that students would soon take over and use
the tools he presented without his assistance. In our view, it is the complex
interweaving of transmission and student participation in Schoenfeld’s reflective
teaching combined with his explicit statements and illustrations of the goals of his

actions that makes his course a good example of teaching towards sense-making.

Finally, it is worth emphasizing that our analysis has not centered on the practice

of the mathematical community (professional “doing”), but on “presenting” in the

32



classroom context. Indeed schools are unique and specialized contexts for
mathematical thinking. We think the analysis shows that the differences between
his classroom community and that of professional mathematicians lies not only in
shared knowledge and skills, as Schoenfeld has suggested, but also in the nature
and goals of the practices in these two contexts. His presentations of mathematical
content and heuristics had clear instructional goals and employed rather tightly
controlled mechanisms for student participation. His intent was that students
construct appropriate models of and beliefs about mathematical activity in the
professional community. But this teaching practice did not make his classroom
part of the professional mathematical community. Rather it helped to close the
gap between the two, creating in students the sense of belonging and contributing

to a more authentic mathematical practice.
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Making the case for heuristics:
Authority and direction in the inscribed square
John P. Smith IIT

To teach his students to solve challenging problems, Schoenfeld must himself
solve a difficult instructional problem: how to introduce Pdélya-type heuristics so
that students quickly appreciate their power and slowly learn to apply them
productively across a wide range of problems.

As his own past teaching and research has shown, this problem does not submit to
easy solutions (Schoenfeld, 1985; 1992a). Students can struggle to see how and
where to apply particular heuristic strategies because of their general character as
“rules of thumb.” Schoenfeld could address this part of the problem by presenting
more specific versions of each strategy with clearer conditions of application. But if
he did, the list of useful heuristics would become too long and cumbersome to
teach and learn (the “specificity” problem). So the generality of strategies (and their
attendant vagueness) must be retained. Given the generality of these strategies,
students must be thoughtful in selecting, applying, and evaluating them, but such
thoughtfulness is difficult to teach. How, for example, should students evaluate
their work so that they avoid committing too much time to unproductive
approaches? Even if students select productive heuristics, applying those strategies
usually involves many steps, and mistakes at any one point can undermine the
entire effort (the “implementation” problem). Finally, the skillful use of heuristics
is not neutral with respect to content knowledge. If students do not know or
cannot recall the necessary mathematical concepts or procedures, even workable

solution plans can fail (the “resource” problem).

Many curricular approaches to problem solving fail to take these problems
seriously. It is common, especially at the pre-college level, either to cast problem
solving as recreation—a separate activity from the “real” task of learning
procedures (e.g., Cooney, 1985)—or to teach students to practice and master each
strategy separately. These efforts, as Schoenfeld (1992a) has argued, fundamentally

miss the mark.

Problem solving in the spirit of Pélya is learning to grapple with new and

unfamiliar tasks when the relevant solution methods (even if only partially
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mastered) are not known. When students are drilled in solution procedures
..., they are not developing the broad set of skills Pélya and other

mathematicians who cherish mathematical thinking have in mind. (p. 354)

One central element in teaching problem solving is identified here: Students must
regularly work on real problems, not “exercises” that are clearly tied to standard
procedures or methods. But even with such problems in hand, how then can you
teach problem solving, introduce and highlight heuristics as important “content,”
and avoid the pitfalls identified above?

In this section we analyze one important step Schoenfeld made toward solving
this problem, using the solution and discussion of the challenging inscribed square
problem as data. Our main claim is that Schoenfeld’s approach involved leading
the class through the solution in a carefully planned and directive manner. In so
doing, he acted in accord with traditional classroom norms (e.g., the teacher is the
mathematical authority) that he aimed to undermine and change. Though his
students eventually chose their own approaches to problems and evaluated their
attempts and solutions (and those of their peers), they were shown their way
through these issues on this particular problem. Schoenfeld’s choice to play the
strong leader and director indicates that his actions and local goals early in the
course did not map onto his long-term intentions and achievements in any
simple way. Getting the problem solving class “off the ground” was a quite
different task than teaching it in its mature, stable form—the stage emphasized in
his written accounts (Schoenfeld, 1988; 1989; 1991; 1994).

The problem and two relevant heuristics

The task of inscribing a square in an arbitrary triangle was second on the problem
sheet after the telescoping series. Its wording and accompanying diagrams are
reproduced below (Figure 2).

You are given the triangle on the left in the figure below. A friend of mine
claims that he can inscribe a square in the triangle—that is, that he can find
a construction that results in a square, all four of whose corners lie on the
sides of the triangle. Is there such a construction—or might it be impossible?
Do you know for certain that there's an inscribed square? Do you know for

certain there's a construction that will produce it?
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The given triangle What you'd like to get

Is there anything special about the triangle you were given? That is, suppose

you did find a construction. Will it work for all triangles, or only some?

Figure 2
Statement of Problem 2:

Inscribing a Square in an Arbitrary Triangle

The questions posed in the problem statement raise the issues of existence and
construction. First, there is the problem of showing that a square can be inscribed
in the given triangle. But an existence proof may not necessarily lead to the
construction of the square, so the question of whether the inscribed square can be
constructed using Euclidean ruler and compass techniques remains. The
existence/construction distinction influenced the class’s work in two ways.
Students struggled at first to understand the problem statement, and a major part
of their confusion was their difficulty in separating these two issues. Schoenfeld
also used the distinction to structure the discussion. He drew on his knowledge
that some existence arguments generate constructions more easily than others to
support the students” progress toward a solution (see Schoenfeld, 1985, pp. 84-91

for his analysis of the problem).

In contrast to the preceding problem (summing the telescoping series) and the
subsequent one (the 3 by 3 magic square), the class found both parts of the inscribed
square challenging. Much of the students” work prior to specific suggestions from
their teacher was devoted simply to understanding the problem. The difficulty
they experienced in getting started provided Schoenfeld with an early context for

demonstrating the power of heuristics in solving problems.

Two related heuristics, both attributed to Pdlya, were introduced in solving this
problem. The very general strategy, Look for a related problem that is easier to
solve and try to exploit its solution to solve the original problem, was the first.
Schoenfeld’s presentation of it was cautionary, if not somewhat negative. A

number of “easier, related” problems were generated and found to be either hard
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to solve or difficult to exploit to solve the original problem. These cautions set up
the second heuristic, If there is a special condition in the problem, relax that
condition and look for the desired solution in the resulting family of solutions.
Two “special conditions” are embedded in this problem: (1) that the inscribed
figure must be a square (a rectangle is easier) and (2) that it must have all four
vertices on the triangle (three vertices are easier). Relaxation of either condition

can (and did) produce an existence proof.
The classroom solution

Overview. Schoenfeld’s work with this problem can be divided into four phases,
spanning some 70 minutes of class time. Some students worked on the problem
during the first 20 minutes of group work prior to the discussion of the telescoping
series solution. Immediately following that discussion, Schoenfeld directed the
class, again in groups, toward the inscribed square problem with the strong “hint”
to Solve An Easier Related Problem (Phase 1). When he called the groups back
together to discuss their progress (Phase 2), three different related problems were
suggested, two by students, one by Schoenfeld. They were considered and
ultimately rejected. The second heuristic, Relax a Condition, was then introduced
and applied in Phase 3. The two conditions were identified, and Schoenfeld used
each to produce an existence proof. At the end of the first session, he sent the class
away with some general directions to investigate one of the existence proofs more
closely. The second class session opened with Devon’s constructive proof (Phase 4).
Schoenfeld used his solution as context to state some features of the mathematical
community he desired.

Clarifying the problem and presenting Solve an Easier Related Problem (Phase 1).
When the discussion of the telescoping series problem ended, Schoenfeld directed
the class to the inscribed square.

This [telescoping series] is a fairly straightforward example. We’ll encounter
a lot more later in the class that are not so straightforward. What I want to
do to nudge you in the direction of a solution to problem 2, but not get you
far enough yet most likely, is mention a second strategy and have you think
about problem 2 a little bit. Which is: [writes and speaks] If you can’t solve
the given problem, try to solve an easier related problem and then exploit
your solution. That’s a statement that’s almost verbatim what it comes out

of—from Pélya. See if you can use that to solve problem 2.
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The arrangement of the class at this point—still in small groups—is reproduced
below (Figure 3).

fixed board three panel sliding blackboard fixed board
AS /
table b
Diane VO Sharon
Don Richard Mitch
Jeff Sasha
Stephen
Student
cameral AA Js CK IM Student Jesus
Figure 3

Arrangement of the Class in Small Groups

Session 1: Inscribed Square

The class did not immediately move to this task. Snippets of conversation from
the four groups indicate that each returned to discuss the telescoping series
solution, solve the series problem that was given just after the telescoping series
problem,? or discuss the principle of mathematical induction. About halfway into
these 20 minutes, one group after another turned to the inscribed square problem.
Schoenfeld worked his way around the room, discussing the problem statement
with each of the four groups. Members of two groups questioned him about what
exactly the problem was asking. His responses emphasized the distinction between
existence and construction. These quick “check-ins” not only assisted students in
understanding the problem but allowed Schoenfeld to observe the work of each

group and see which particular “easier related” problems they generated.

In opening the whole group discussion, Schoenfeld declared his expectation that
students would come to the board in the next class session and present their work
on problems. He then focused their attention on the inscribed square problem
with a question, “What does problem 2 tell you to do?” When there was no
immediate response from the class, he explained the two parts of the problem and
used the example of an angle bisector to distinguish existence from construction.

The existence of the angle bisector was established by considering all rays interior

8The second part of problem 1 was, “For those of you who've seen this series, how about

1/ .2/ ,3/ .4 ,
A!+/3!+A!+/5!+""+%1+1)!?
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to the angle whose endpoints are the vertex and using a continuity argument. He
then drew students’” attention back to Solve an Easier Related Problem, reminded
them that they would be reading Poélya’s discussion of it in How to Solve It (a
supplemental reading for the course). But his stance was cautionary, “... remember
I said lots of people thought Pélya didn’t quite work and this is an example of why.
We need to push him a little bit further.” Even as he promoted heuristics, he

hinted at difficulties in using them, in this case the specificity problem.

Evaluating Solve an Easier Related Problem (phase 2). When Schoenfeld asked a
more specific question, “What easier related problems did people try? I'm
curious,” three students responded. For each suggestion, Schoenfeld gave a quick
verbal restatement and wrote the suggested approach on the left-hand blackboard
(leaving the center board empty and available). We reproduce the major elements
of this dialogue below because it is crucial to understanding and interpreting his

approach.

Mitch: Relax the constraint on the square and try a rectangle.

AS: OK, let me get to that in a minute [chuckles]. OK, um. So the
problem says, stick a square inside the triangle and each corner
is on the triangle, one easier related problem is: Don’t go for the
square, go for a rectangle. [Writes “1. Try a rectangle instead”
under the list heading “Related Problems.”]

What else did people try? I saw people doing different things,
so I know that you tried.
Devon: I tried to disprove it for an arbitrary triangle.

AS: OK. Try to find a counterexample. So, this is if you don't
believe it’s true, that’s not part of the strategy but, [Writes as he
speaks, “Look for a specific counterexample,” well below
suggestion #1] And that’s a generally useful thing to do. [Some
of AS’s short commentary on the benefits of looking for specific
examples and counterexamples is omitted here.] Other things
that people tried? Yup? [responding to student]

Student: A circle. [This student was not visible on the videotape.]

AS: OK. The problem was, stick in a square inside a triangle. An
easier related problem might be, [writes as he speaks, “Try a
circle,” just below suggestion #1]. Other things that people
tried? Yeah? [responding to Sasha]
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Sasha: Is that a square in a circle or a circle in a triangle?
[AS appeals to the student who made the suggestion and
clarifies that suggestion #2 was to inscribe a circle in a triangle.
He outlines the construction of the square in the circle but
states it is not useful for solving the problem.]

AS: Other things people might have tried?

[no response for approximately 5 seconds]
I can mention at least one more that I thought I saw people
doing, and that I've certainly seen before. Instead of making an
arbitrary triangle, make a special kind of triangle, try either the
isosceles or equilateral triangles. [He writes, “3. Instead of an
arbitrary triangle, try special triangles—isosceles, equilateral.”]
Let me leave number 1 alone for a short while. I'll get back to
that and a couple of others, and talk about the general process
and illustrate it with numbers 2 and 3. “‘Cause this is a general
discussion of, what happens when you try to use the

suggestions.

The final written list of suggested approaches to problem 2 is reproduced in Figure
4 below.

Related Problems

1. Try a rectangle instead.

2. Try a circle in a triang]e.

3. Instead of an arbitrary triangle, try special triangles—isosceles, equilateral.

m

Look for a specific counterexample.

Figure 4
Schoenfeld’s Restatements of Students’
Easier Related Problems for the Inscribed Square

Two important teaching decisions are notable in this exchange; both are related to
the task of structuring the discussion of Solve an Easier Related Problem and the
problems it generated. First, Schoenfeld did not list the suggestions in the order in
which they were given. The suggestion to look for a counterexample was listed
below the others and separated from them by a squiggly line. The message seemed
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to be: this is a different sort of suggestion, and we should treat it differently.
Second, he chose not to consider the suggestions in the order in which they were
given. At the end of the interchange, he declared his intention to “discuss”
suggestions 2 and 3 before suggestion 1, though the latter was certainly a
straightforward example of an “easier related” problem. These choices suggest that
Schoenfeld had lessons he wanted to draw from this problem, that some student
suggestions fit more easily with his plan than others, and that to draw out these

lessons he needed to consider the students” suggestions in a particular order.

To frame the discussion of the “general process” of using related problems (and
the attendant pitfalls) he drew an application scheme for the second heuristic on
the board and identified a question relevant to each step. For the first step, if you
can identify what seems to be an easier related problem, can you solve it? For the
second and perhaps more important step, does that solution help to solve the

original problem? This scheme is reproduced in Figure 5 as he drew it on the

board.

e h easier related solution to
yourte here problem original problem
Figure 5

Schoenfeld’s Application Scheme

for Solve an Easier Related Problem

With this general frame before the class, he sketched a circle inscribed in a triangle,
stated that the construction could be done (referring again to work in high school

geometry), but declared that it could not be used to solve the original problem.

So for that particular problem, this part is easy [tracing the arrow between
the “you’re here” and the “easier related problem” box] at least at the level
of yes, you can take that step. . . . but I've never found anyone who was
actually able to take that particular thing, go from having a circle inscribed
in a triangle and be able to use that to inscribe a square in a triangle. So the
problem is that you can spend a fair amount of effort getting here [pointing

to the “easier related problem” box] and then I know of no way to get there
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[pointing to the “solution to original problem” box]. So that’s an example of
a stepping stone that only doesn’t do you too much good because it only gets
you halfway there. [emphasis added]

His treatment of the two special triangles which followed was similarly brief.
Instead of drawing either an isosceles or equilateral triangle on the board, he

simply stated that both possibilities fail by both criteria, easier and related.

It looks like it should be easier to inscribe a, square in something nice and
regular like an isosceles triangle instead of a random triangle, or maybe
even equilateral, but it turns out I don't know of anyone who has actually
managed to do that in an easy way, and I don't know of anyone who’s been
able to show how you can go from a solution of that to the general solution.

[emphasis added]

From these illustrations of the problematic nature of Solve an Easier Related
Problem, Schoenfeld stated his general point, “When you’re working on a
complicated problem that involves using a stepping stone, you want to think both
about getting to the stepping stone and whether or not you can get from there on.”
The stage was now set for reformulating this heuristic in a more specific and
deterministic form.

Presenting Relax a Condition (phase 3). Declaring his intention to help students be
more specific about how they might generate easier related problems, Schoenfeld
introduced the third heuristic of the day, “a more elaborate version of Pélya’s

strategy,” alternately speaking and writing on the board.

Suppose the problem asks for something, that’s what I mean by a specific
condition in the problem you want, Pélya says relax the condition, ask for
something, ask for less. Since you're less demanding, there ought to be more
solutions. There could be a whole family of them. So if you get a whole
family of them, maybe you’ll find the one you want in that family. [His
written statement reads, “If there is a special condition in the problem you
want, relax the condition—ask for less. Since you're less demanding, there
should be a whole family of solutions. Look for the one you want among

them.”] [his emphasis]
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Turning then to the issue of specific conditions, he asked, “What does the problem
ask you for?” A combination of student suggestions and Schoenfeld’s
interpretation produced two conditions which were also written on the board: (1)
the desired figure was a square and (2) all four of its vertices must lie on the
square.

He chose to tackle the first condition, asking the class what was easier than a
square. A student (invisible to the camera) responded quickly, “A rectangle.”
When Schoenfeld asked how a rectangle could be inscribed in the triangle he had
drawn on the board, Devon began to outline a construction using three
perpendicular segments. Schoenfeld accepted and completed his procedure,
quickly producing three different rectangles, including a “short and fat” and a “tall
and skinny” example, as reproduced below in Figure 6.

VN

Figure 6
Three Inscribed Rectangles

From these three examples, Schoenfeld completed the continuity argument for the
existence of the inscribed square: if the short, fat rectangle were transformed
continuously into the tall, skinny one, that process must generate a rectangle with
equal base and height (i.e., a square) somewhere along the way. He added that this
was “actually the same continuity argument that I used before for the angle
bisector.” But with this existence proof in hand, he then denied the possibility of

elaborating it into a constructive proof.

Now that’s a nice existence proof. I don’t know how to turn that into a
constructive proof. So that’s actually argument number one, that’s part of
the problem but not the whole problem and to this day, I don't know how
to take that nice, little existence proof and say, “Yeah, you can use that and,
out of that here is a sequence of things you can do with straightedge and

compass.” [emphasis added]



He then turned to the second condition and asked for volunteers to generate
squares with three vertices on the triangle that he’d drawn on the board. Three
students, Sasha, Devon, and Stephen, came to the board, each producing an

“inscribed” square of different size and orientation (Figure 7).

Devon

Stephen

Figure 7
Three Students’ Partially Inscribed Squares

Stephen’s construction assumed the top angle of the triangle was a right angle.
After noting this flaw, Schoenfeld erased that square, leaving two. He asked once
more for other examples and, hearing no volunteers, noted his surprise that no
one drew a square in the opposite corner to Devon’s, because that “normally
happens.” He then drew increasingly larger squares with the same orientation as
Devon’s (see Figure 8) and asked, “What you can tell me about that family, what
happens to the fourth corners?” Sharon responded, “They're given any range of
sizes and then when you finally meet a distance where the, where the fourth one,

where the fourth vertice meets the triangle, you have four equal sides.”

Schoenfeld drew a squiggly locus connecting the fourth vertices of the squares
(Figure 8) and restated Sharon’s response in terms of the intersection of the locus

and the triangle, thus completing the second existence argument.
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Figure 8

The Squiggly Locus Connecting the Fourth Vertices of “Inscribed” Squares
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With the end of class approaching, he directed the class to “play with this example
for Wednesday and see what you discover.” This “assignment” seemed a clear
indication that the second existence argument was more likely to generate the

missing construction than the first.

The constructive argument (phase 4). At the start of the next class two days later
Schoenfeld pointed the class back to the problem, “We left with problem 2 partly
solved and partly up in the air. Does anyone have anything to say about problem
2?” When Devon volunteered and came to the board to show his solution,
Schoenfeld turned to the class and described some of his longer-term goals for the
class.

One of things that I want to do during the course of the semester is get us
talking like a mathematical community and ultimately using the standards
of the mathematical community which means not like mumbling on the
board, but instead being fairly clear, lucid, really making arguments clear so
that all of us can understand precisely what’s going on. So I'm going to push
for those kind of standards in explanation, which means not just beautiful
finished products, but also explanations of how and why it’s reasonable that
you did what you did and things like that. OK?

Figure 9 gives the location of the participants in the classroom at that point in
Session 2.
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Figure 9
Arrangement of the Class: Start of Session 2

Devon’s Construction of the Inscribed Square



Devon’s argument was based on his insight that the inscribed square could be
produced by simply scaling another square up or down and therefore that the
problem could be solved using similarity. He first explained how to construct a
square with three vertices on the square and the fourth lying outside the triangle
(Figure 10, frame 1).
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Figure 10

Devon’s Drawings Illustrating the Inscribed Square Construction

Then he drew the line from the far vertex of the triangle (point E, in frame 2)
through the outside vertex of the square. (This line is the accurate representation
of Schoenfeld's “squiggly locus.”) The point of intersection of that line with the
triangle (point A' in frame 2) is one vertex of the inscribed square, and the rest of
the square A'B'D'C' can be constructed from that point by dropping perpendiculars
to the other two sides of the triangle. Devon went to show how, via similar
triangles (e.g., ABE ~ A'B'E'), the fact that ABDC was a square guaranteed that
A'B'D'C' was also.

Throughout his presentation, Devon faced and addressed himself primarily to
Schoenfeld, not the class. Schoenfeld, still seated in the front corner of the room,
called students’ attention to this phenomenon and suggested different standards

for their presentations in class.

A comment and a question: The comment is that what just happened in
terms of [Devon’s] behavior is exactly what happens on the second day of
class every time I teach this course, which is that: I ask someone to do
something at the board and he spends 90 percent of his time looking at me
for approval. I'm actually pretty good at playing poker and not revealing
whether something is correct or not. I'm going to do that a lot, because
ultimately I don’t want to be the judge of what’s right or wrong. The judge
of what’s right or wrong in some sense is the mathematics and in another

sense, it’s the class. And what I want this to be is a community that develops
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its own standards about mathematical correctness and it argues about when
it buys an argument or not. So that’s my comment. The question then is, did
you guys buy what you've seen? Is that sufficiently compelling that you all
believe the construction that [Devon] suggested? [pause during which Mitch
says, “I'm not really convinced it’s a proof.”] I saw three heads nodding [Jeff’s

was one], I saw a bunch that didn’t react.

Perhaps in response to Mitch’s skepticism, Devon said that he “could argue for it.”
His restatement added more detail, e.g., ABE ~ A'BE'and ACE ~ A'CE'
guaranteed that A'C' = A'B', but included no major changes. When he finished,
Schoenfeld again asked the class if they were convinced, and this time no one
spoke up. Devon went back to his seat, and Schoenfeld returned to the center
board and explained how he would generally evaluate students” presentations. His
evaluation of Devon’s argument was different and explicitly positive, though with

qualifications.

One of the things that I'm going to do throughout the period of the course is
ask nasty questions. Some of the times when I ask a nasty question that will
indeed be true that it turns out that will be the case and that will knock your
argument apart. Some of the times it turns out that your argument’s right
and I'm just being nasty [murmur of amusement from class]. That’s because
again the idea is what we’re trying to do is make sure that the arguments are
right. I buy this argument, and it needs a little bit of cleaning up maybe to be
comprehensible to anyone who hasn’t had [Devon] explaining it to them.
But the structure of it, I think, is pretty nice and straightforward. It’s still a
little bit, looks like a rabbit pulled out of a hat, in that you have a nice

explanation for something that’s sort of presented there full-blown.

Then to connect Devon'’s proof to the previous day’s line of development—and in
particular to Relax a Condition—he showed how the proof could be interpreted in
terms of relaxing conditions. Next came the standard “final” query, “Are we
done?” A student (possibly one of the two students who entered the room during

Devon’s presentation) responded, “Think so.” Schoenfeld replied,

You'll learn within two weeks that’s almost always a rhetorical question.
The answer is “No” because there’s still more we can do with that. Let me

[erases board], let me return to a point where we left off on Monday and that
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actually will wind up with the same construction but might give a different

idea of how it actually works.

He reconstructed a series of partially inscribed squares in a triangle, highlighted the
fourth vertices, and asked what might be true about this locus. A student (not
visible on the videotape) responded that it might be linear. Schoenfeld then left it

for the class to verify that the locus was indeed a straight line.

Discussion

Of the many instructional issues Schoenfeld addressed early in the course, none
was more important than the task of introducing heuristics so that students
quickly appreciate their importance and gradually begin to use them intelligently.
What does Schoenfeld’s management of the solution of the inscribed square

reveal about his approach to this teaching problem?

Before turning to the solution itself, it is important to consider the place of the
inscribed square in the course as a whole. Two major components of Schoenfeld’s
curriculum are his problems and the heuristics that he introduces with them. If
students are ever to see heuristic strategies as problem solving tools worth
learning, they must face problems that do not easily submit to techniques they
already know. In contrast to the two other problems discussed in detail in the first
week, most students found it difficult to make progress on the inscribed square.
Because that problem stumped most of the class, Relax a Condition could then
demonstrate the power of heuristics. Likewise, Try an Easier Related Problem
illustrated that one needs experience, skill and even patience in order to use
heuristics—that they can’t be applied in rote fashion. The discussion of the pitfalls
of easier related problems helped to clarify their non-deterministic, “rule of
thumb” character and show the importance of how you apply them. So
Schoenfeld’s solution of the instructional problem required demonstrably hard

problems and quickly useful, if non-deterministic, heuristics.

But difficult problems and potentially useful strategies are only part of the story.
Schoenfeld’s extensive experience with the inscribed square problem provided
well-grounded expectations about what students” likely responses would be (e.g.,
which easier related problems they would generate). These expectations
complemented his knowledge of which solution paths would be more accessible to

students than others (e.g., which existence proofs led toward constructions). This

48



knowledge made it easier to recognize and interpret his students” suggestions and

guide their efforts toward a successful conclusion.

These three top-level features (problems, heuristics, and prior experience with the
problems) are all consistent with Schoenfeld’s stated goals for the class. Solving
problems (as opposed to exercises) supports his claim that the activity in and
around the class reflects important aspects of professional mathematical practice.
Learning to judge when, if, and how to apply particular heuristics is an important
part of that practice. And the fact that extensive teaching experience with particular
problems was central to using those problems productively reflects the complex
relationship between problems and heuristics. But his management of the
solution itself, particularly his appropriation (or not) of students” suggestions,

bears a more complex relationship to his goals for the class.

It is important to recognize that the students played an active and substantive role
in solving the inscribed square. Nearly half of the class contributed some piece of
the evolving solution, and Devon’s work, especially his construction, was more
than simply “a contribution.” Schoenfeld deliberately solicited their participation,
but he also carefully organized and controlled it. Student input was solicited at
certain points in the solution (e.g., when a range of possible approaches was
needed) and not others, and their suggestions were assimilated into his
instructional plan. His role as instructional leader and, at crucial junctures,
mathematical authority was central to the pace and process of the solution. He
orchestrated student participation within a relatively traditional model of roles for
teachers and students, where teachers decide what choices to offer to students and
when it is best to do so. These traditional elements of teaching appear—at first
blush—to run counter to his stated long-term goal of creating a mathematical
community where authority rests with the mathematics and community as a

whole.

Before attempting to resolve this apparent contradiction, we review the evidence
that undergirds these interpretative claims. First, what indicates that Schoenfeld
came in with a pre-existing plan for solving the inscribed square? Though we did
not question him at the time about his plans, he has written about his purposes for
using the problem (to demonstrate the difficulties of applying heuristics), the
easier related problems he expects to see (try a rectangle, try a circle, try a special
triangle), the two existence proofs, and the difficulty of obtaining a construction

from one of them (Schoenfeld, 1985, pp. 84-91). Most of the major elements of the
49



solution that he orchestrated with the class are present in this written account.
Given the strong similarities between the two, it is difficult to doubt the existence
of a detailed instructional plan. Schoenfeld chose the inscribed square as the
second problem of the course for particular reasons, and the main elements of the

discussion were in place for him before the problem sheet was given to students.

This plan then became the framework for guiding the class through the solution
and underscoring major points along the way. To achieve these goals in a
reasonable time frame, he directed the class down certain pathways (and not
others) and used his own mathematical experience and authority to justify these
choices. As warrant for this interpretation, we summarize in chronological order
the instances where Schoenfeld used his personal authority to direct the course of

the solution.

* He wrote Devon’s suggestion to seek a counterexample below the other
suggestions and did not seriously consider it in the subsequent discussion.

* He delayed dealing with Mitch’s suggestion to relax the condition on the
square and try a rectangle (suggestion 1) until he discussed suggestions 2
and 3.

* He asserted that inscribing a circle in the triangle could not be adapted to
inscribing a square in a triangle.

* He asserted that the solutions for isosceles and equilateral triangles were
neither easy to produce nor to adapt to the arbitrary triangle.

* He asserted that the first existence proof could not be adapted into a

constructive proof.

What can we learn about his teaching from these choices? First, given the match
with his plan for the solution, each move is an example of how teachers
appropriate students’ ideas and suggestions to their own plans (Newman, Griffin,
& Cole, 1989). Appropriation is a tool for balancing the dual goals of engaging
students” interest and participation and sustaining progress toward important
instructional goals. Second, while these instructional decisions were all explicit in
the data, they were not all identical in character. The first two were management
choices; they were decisions about what to take up for discussion and what to set
aside, more than direct evaluations of what could be done mathematically. The
tirst decision was sensible since the search for counterexamples would have been

very difficult to assimilate into his plan. So Schoenfeld honored the suggestion in
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general terms and set it aside. The second decision was equally sensible since
developing this suggestion first would have removed the possibility of teaching
the lesson about the pitfalls of easier related problems. In that sense, Mitch’s

suggestion to relax a condition on the square was too good.

The last four, however, all involved Schoenfeld’s explicit judgment of what is
possible and productive mathematically and were justified by appeal to his own
mathematical experience. Essentially they communicated the message, “Trust me.
I have explored this problem extensively, and I know its ‘ins” and ‘outs’.” Like the
management of Easier Related Problems, these declarations sped the solution
along, by curtailing potential solution paths that Schoenfeld knew to be
unproductive. But to do so, he implicitly asked students to accept his role as the

mathematical leader and decision-maker.

How then do these teaching moves fit with the overall goal of creating a
mathematical community in the classroom? More generally, how do mathematics
educators deal with mathematical authority, balance their informed authority
against emerging student autonomy, and support students’ growth toward a

powerful and independent mathematical competence?

The first step toward a resolution is to acknowledge the mismatch: the solution of
the inscribed square was inconsistent with some of the overarching goals of the
course. Schoenfeld’s directed solution does not easily square with the ideas of a
classroom mathematical community pursuing its own solutions, and his
statements about what was possible mathematically are not consistent with the
methods of public justification employed by the professional community. On the
other hand, the Overview points to evidence that Schoenfeld’s teaching has
moved students substantively toward his declared long-term goals, and our
observations suggest this was the case for the 1990 class as well. Students became
more proficient problem solvers; they learned to use heuristics productively; they
interacted as a community of problem solvers; and they accepted the task of
judging and nudging each other’s ideas and arguments. So the question must be
restated as, “Why was the direction not counterproductive to the long-term

goals?”

Our view is that there were more important goals for Schoenfeld early in the
course and that these may have required his exercising a leadership role in

deciding some issues for the class. He must convince students that they have
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important things to learn in the course and that he will support them in that
effort. If he did not strongly guide students’” problem solving in the early days, they
could easily flounder, pursue too many deadends, and come to question the entire
enterprise. Instead, Schoenfeld made sure that they struggled enough to realize
that they could not solve the problem easily but could be successful with his
direction and the proper tools. These experiences were part of the transition
toward more independent problem finding, problem solving, and justification. In

short, his directive instruction gave priority to some goals over others.®

Our goal in emphasizing the complex relationship between instructional goals and
teaching practice in this segment has not been to question or endorse the
optimality of Schoenfeld’s decisions. Rather, we have shaped the analysis to
illustrate the interaction of ambitious educational goals, detailed instructional
plans, teaching moves, and students’ contributions. One main lesson is that
innovative teaching oriented toward ambitious, non-traditional goals can embrace
both traditional and non-traditional elements. The achievement of such goals may
depend as much on the traditional elements as the non-traditional and on skillful
balancing of short-term objectives and quite different long-term goals. This
conclusion, we believe, undermines simple descriptions and explanations of
successful non-traditional mathematics teaching. We need to look more closely to

understand what works in these settings and why.

9We acknowledge that Schoenfeld did take some explicit actions toward building the classroom community and
shifting the locus of authority in the first week, e.g., his statement to the class about standards for written and oral
arguments before Devon presented his constructive argument and his statement about asking nasty questions to the
class afterward. Our argument is that this was not his primary goal in the first week.
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Practicing mathematical communication:
Using heuristics with the magic square’°

Cathy Kessel

The language is not alive except to those who use it.

(Thurston, 1994, p. 167)

Schoenfeld (1991) gives an account of a classroom discussion of the magic square
problem. Here is the version of the third problem he gave to his students in the

class.

Can you place the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9 in the box below, so that
when you are all done, the sum of each row, each column, and each

diagonal is the same? This is called a magic square.

In his account of the discussion of this problem Schoenfeld describes briefly how
the problem, though trivial, can be used to illustrate many heuristics and other
important aspects of mathematical thinking: Establishing Subgoals, Working
Backwards, Exploiting Symmetry, Working Forwards, using systematic generating
procedures, focusing on key points for leverage, exploiting extreme cases, solving a
problem in more than one way, and using a problem as a springboard for further
mathematics. At the end of his account he says that an important aspect of the
discussion, the classroom dynamics which “reflected the dynamics of real
mathematical exploration” was not described. One might wonder how a classroom
discussion could reflect the dynamics of mathematical exploration and how such a
discussion could happen on the second day of a course. The goal of this section is

to examine the classroom dynamics of another magic square discussion, led by

101 would like to thank Alan Schoenfeld for the man ways in which he helped to make this article possible. His
su]laport, and that of the Functions Group and the School of Education at the University of California have helped me
to learn about and do research in education. For comments, criticisms, and encouragement as this article slowly
evolved, my thanks go to: Margaret Carlock, Marisa Castellano, Judith Epstein, and Jean Lave; the RCME editors:
Ed Dubinsky and Jim Kaput; the RCME reviewers: Barbara Pence, Beth Warren, and one anonymous reviewer;
Mary Barnes, Sue Helme, and Derek Holton; and my co-authors: Abraham Arcavi, Luciano Meira, and Jack Smith.
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Schoenfeld in the fall of 1990, and to consider some of the features of

mathematical practice it reflected.

Several aspects of this discussion are striking. Very little was written on the
blackboard. What did appear were heuristics, diagrams, an equation, and a
question, rather than the line by line theorems and proofs of traditional upper
division courses or the line by line theorems, examples, and solutions of lower

division courses.

The kind of speaking in Schoenfeld’s classroom also differed from that of a
traditional class. For example, in one seventeen-minute segment of the whole-
class discussion of the magic square, though the teacher was at the front of the class
and the students were not working in groups or presenting solutions, there were
fourteen utterances—questions, comments, suggestions about the mathematics at
hand—made by students. One would expect only questions in a traditional class

and very few at that.

These differences suggest that communication is an important feature of this class
and that research on language and communication might illuminate some of the
reasons why Schoenfeld has chosen to conduct his class in this manner. In this
section I use some analytic frameworks from sociolinguistics to describe classroom
communication and to compare it with that of research mathematicians. I have
been an undergraduate, graduate student, and faculty member at various
mathematics departments across the U.S., and I draw on this experience as well as
on written accounts to describe the teaching and research practices of

mathematicians.
Differences in speaking and writing

At the beginning of the first day of a typical upper division undergraduate
mathematics class, the professor writes her or his name, office location, and office
hours on the board. After a brief statement about determination of course grades,
she or he begins to lecture, starting with definitions and notational conventions
and perhaps reaching some new material midway through the first class. There are
few, perhaps no, questions from the students, which will be true for the rest of the
term. The professor writes almost everything on the blackboard and almost
everything has one of the following labels: theorem, lemma, corollary, proof,

example, axiom, conjecture, definition, notation. One exception is pictures or
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diagrams, another (in applied mathematics classes) is applications. With such a lot
of writing to do, blackboards, chalk, and erasers become extremely important.
Professors become skilled at arranging their writing on the board, not erasing
theorems or diagrams until they won't need to refer to them again. (An
inattentive professor may also cover one sliding board with another so quickly
that students can’t finish copying the writing on the board. Schoenfeld did this on
the first day of class in his enactment of the typical calculus professor, as described

in Meira’s section.)

The main focus of the typical mathematics class is the blackboard and students’
main activity is taking notes, and following the lecture. As in written mathematics
the statement of results tends to be impersonal. Names occur mainly in important
theorems, definitions or axioms, e.g, Stokes” Theorem, Green’s Theorem, Godel’s
Incompleteness Theorem, the Zermelo-Frankel axioms of set theory, the Peano
Postulates, Noetherian ring, Abelian group. The time at which the object was
constructed isn’t often mentioned. (Later, as students reach the edges of
mathematical knowledge in graduate school, names and dates appear with much

greater frequency.l)

The classroom language of the typical mathematics professor reflects the way
mathematics is presented in writing. “Assume the following holds . . . ,” “it

aws

follows easily that ... ,” “it is not the case that . .. ” are frequent phrases (for more
examples see Pimm, 1987). Rotman (1993, p. 7) describes written mathematics as
“riddled with imperatives, with commands and exhortations such as ‘multiply
items in w,” “integrate x,” “‘prove y,” ‘enumerate z’” and “completely without
indexical expressions, those fundamental and universal elements of natural
languages whereby such terms as ‘I,” “you,” ‘here,” “this,” as well as tensed verbs, tie
the meaning of messages to the physical context of their utterance.” For example,
the magic square problem could have been stated in the following way: “Place the
numbers 1 through 9 in the boxes to the right so that the sum of each row,
column, and diagonal is the same. Such an arrangement is called a magic square.”
This imperative statement doesn’t mention where and when the action of placing

numbers in boxes is occurring, nor who is acting.

11This description is not meant as a condemnation. Some of my happiest and most instructive hours have been spent
in such courses. I appreciate well-tended blackboards and good chalk and my spoken lan%uage reflects written
mathematics. At the end of this section I suggest some reasons why not all students are so fortunate.
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Chafe and Danielewizc (1987) characterize a style with few indexical expressions as
“detached,” “show[ing] an interest in ideas that are not tied to specific people,
times, and places, but which are abstract and timeless” and which avoids
mentioning concrete doers. They note that this style predominates in writing and
suggest a reason for it—"“for writers, the audience is usually unseen, and often
unknown” (p. 19). This detached style of speaking and writing about mathematics
suggests to listeners and readers that mathematics is independent of time and
place. This is consistent with the epistemology (a mixture of formalism and
Platonism) held by many mathematicians (Davis, 1986; Davis & Hersch, 1986;
Ernest, 1991; Fauvel, 1988). It is also consistent with the epistemology held by many
high school students that learning mathematics is mostly memorizing facts
(National Center for Educational Statistics, 1993) and that the ideas of mathematics
have always been true and will always be true and were discovered (not invented)
by mathematicians (Clarke, Wallbridge, & Fraser, 1992). And it is also consistent

with the mathematics classroom experiences of undergraduates (Mura, 1995).

In contrast, note Schoenfeld’s wording of the magic square problem which begins,

“Can you place” rather than “Place the numbers.” We shall see many

III awrs s e
4

indexicals— we,” “you,” “Devon’s question,” “what Jeff guessed last
time”—in Schoenfeld’s speech. Chafe and Danielewizc call a style with many
indexicals “involved” and note that it is characteristic of, though not limited to,
spoken language. They also note, “In most spoken language an audience is not
only physically present, but has the ability to respond with language of its own”
(pp- 18-19). This suggests that, in addition to acknowledging their presence, an

involved style may invite listeners to respond.

And Schoenfeld does want his listeners to respond. Because a main goal of his
course is the creation of a “mathematical community,” one of his goals for the first
days of the course is to get the students to talk: “Clearly what I need to do is begin
pulling things from [the students] because part of what the course is supposed to

do is turn things over to them” (audio taped discussion, May 22, 1991).

Schoenfeld’s language is not only involved, but informal and non-technical with
occasional shifts in style to language that reflects written mathematics. Such shifts
are known as code-variation. Saville-Troike (1989) defines codes as “different
languages, or quite different varieties of the same language” and code-variation as
a change in code within a speech event. She notes that code-variation may serve

many different purposes, depending on context. Here, Schoenfeld’s shift to
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language reflecting written mathematics serves to display his group affiliation as
well as to help the students to become familiar with mathematical language. Just
as patients don’t have faith in a doctor who “doesn’t talk like one” despite the
miscommunication that can occur when doctors use technical language (Saville-
Troike, 1989), students may not have faith in a professor who doesn’t talk like one.
Schoenfeld must talk a fine line between being understandable, approachable, and
interested in students’ contributions, and maintaining his status as the
knowledgeable member of the mathematics community depicted in his
monologue at the beginning of the first class session. His informal language may
suggest to students that it is acceptable if they reply in the same manner. It also
contrasts with and emphasizes the few technical words he does use: names of

heuristics (which he sometimes labels “jargon”) and mathematical terms.

As with spoken language, there are differences in how much Schoenfeld writes,
what he writes, and the way he uses writing. This difference suggests a different
emphasis, and a different view of what is important in this classroom. Not only
does Schoenfeld write considerably less than a traditional mathematics professor,
but when and what he writes are different. Both mathematics and heuristics
appear on the blackboard as one would expect in a class on heuristics and their use.
The diagrams in this class would not be seen in a textbook or an article, they are
used to work with, rather than to illustrate. They are altered throughout the
course of the discussion and erased only when the discussion is over. This use of
diagrams allows Schoenfeld to avoid technical language as well as to make the
problem more immediate and his descriptions more direct. The other blackboard
writings are names and brief descriptions of heuristics. The connection between
mathematics and heuristics is not recorded on the blackboard, it is made through
questioning, and interaction with the class. Formal proofs aren’t given, instead,
their genesis is enacted in the classroom discussion. Later in the term, students

will present their own conjectures and proofs.

Not only are there differences between the informal, involved style of his
language and the detached style of a traditional professor of mathematics, there are
also differences in the content of Schoenfeld’s language and its mode of use. Its
content includes what is traditionally thought of as the subject matter of
mathematics classes, but is also about math, about how math gets done, about

revealing “the tools of the trade,” and about learning that trade. This suggests a
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different emphasis—not only is mathematical content important, but how one

does mathematics is a legitimate topic of classroom discussion.

As Arcavi points out in the overview, Schoenfeld has two different modes of
communicating with the class as a whole: presenting and involving the class in
discussion. As we have seen in the previous sections and shall see in this section,
Schoenfeld uses these different modes of communication for different purposes.
In general, Schoenfeld presents heuristics, either as an explanation of a
mathematical suggestion given by a student, a name for a process that’s just been
illustrated, or to give direction to the solution of a mathematics problem. In the
latter case, the heuristic is frequently instantiated in the mathematical context at
hand by the students.

Schoenfeld gets the students to instantiate heuristics by a method of questioning
similar to that described by Pélya (1973) in How to Solve It.

The teacher’s method of questioning . . . is essentially this: Begin with a
general question or suggestion on our list [of heuristics], and, if necessary,
come down gradually to more specific and concrete questions or suggestions
till you reach one which elicits a response in the student’s mind. . . . It is
important, however, that the suggestions from which we start should be
simple, natural, and general, and that their list be short. . . . The suggestions
must be general, applicable not only to the present problem but to problems
of all sorts. . . . The list must be short in order that the questions may be
often repeated, unartificially, and under varying circumstances. . . . It is
necessary to come down gradually to specific suggestions, in order that the
student may have as great a share of the work as possible. . . . Our method
admits a certain elasticity and variation, it admits various approaches . . . it
can and should be applied so that questions asked by the teacher could have
occurred to the student himself. (pp. 20-21)

Schoenfeld has taught his class many times before. Though he does not know his
students well at the beginning of the course, as in the cases of the telescoping series
and the inscribed square, he knows most of the responses students will make to
his questions about the magic square. Students are not completely predictable
though and Schoenfeld’s management of the discussion also had opportunistic
elements (Hayes-Roth & Hayes-Roth, 1979; Schoenfeld et al., 1992). Students’
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questions and suggestions, both predictable and unexpected, were used to serve

goals of the discussion and of the course.
The nature of the problem

Both the magic square problem and the way in which it is used are important
elements of this discussion. The magic square was the third problem on the sheet
given to the students and the third to be discussed. One difference between the
magic square problem and those preceding it is that its solution is indubitable (it
can be checked by a simple calculation), and easy to reach. Unlike the problem of
inscribing a square in a triangle, it is easy to solve, and couldn’t be used to
convince the students that they needed to learn heuristics. It may even suggest to
students that they have been using “raw” heuristics—heuristic tendencies that

need refinement before they are likely to be consistently useful (Silver, 1985).

However, the magic square serves as an excellent vehicle for the introduction and
illustration of heuristics. Because the mathematics involved is elementary,
students can discuss it without the fear of displaying ignorance—it’s easy to talk
about (Schoenfeld, audio taped discussion, May 22, 1991). Because there is no need
to focus on getting a solution, students can focus on the process of arriving at a
solution. What follows is an account of the discussion of the magic square.
Annotations and interpretations in brackets are interspersed. Italics is used in two
different ways in the transcript: Italicized phrases were both spoken and written on

the blackboard; single words in italics indicate words emphasized by the speaker.

The discussion of the magic square

Schoenfeld asks for volunteers to present the magic square problem. Jeff
volunteers and presents his group’s solution. After Jeff sits down, Schoenfeld goes
back to the board, acknowledges the solution (“the answer speaks for itself”) and
indicates a transition to another activity “What I want to do is play with this a
little bit. First of all it’s not a problem you want to do by pure trial and error.” He
then gives a standard combinatorial argument to show how many different ways
there are of filling a 3 by 3 grid if one places the digits from 1 through 9 randomly
in its cells. He notes, “There are 9 ways that you can stick any number, say [points
to top left square of grid], in this square, 8 in that one [points to top middle square]
after you've used one, 7 in the next one” and so on. This yields 9! ways to fill in the

3 by 3 grid—but, he observes, the magic square has eight-fold symmetry, so there
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are 9% =9x7x6x5x4x3x2x 1non-equivalent ways one might fill it. Then,

saying intermediate products aloud, he quickly calculates the result.

[Professors teaching undergraduate courses don’t often do computations involving
large numbers in front of their classes. One reason for doing it here might be to
emphasize the improbability of obtaining a solution by random search. This will
contrast with the solutions obtained by the use of heuristics that will follow.
Another might be to display mathematical expertise to those who consider quick
calculation a sign of expertise. A more subtle message which this calculation may
convey is that none of the students used pure trial and error. They all solved the
problem.]

During his calculation Schoenfeld mentioned the eight-fold symmetry of the
square. Devon asks if there were any solutions to the magic square not equivalent
using symmetry. Schoenfeld replies “That’s a good question, let’s leave that as
something to look at” and writes the question on the sideboard where it remains
for the rest of the discussion.

[Schoenfeld’s knowledge of the magic square and its different solutions allows him
to make this response, knowing that the question will be answered before the class
ends. His action serves several purposes: It legitimizes the student’s question
without immediately changing the flow of the activity, begins a community
history and gives an example of mathematical practice—questions are important,
they may not be immediately answered, but one may later note as Schoenfeld will
do, that a particular question has been answered by a proof or construction.]

Schoenfeld says “So if you don’t want to do it by trial and error then what you
really want to do is look for ways to reduce the number of things you've got to
consider” and summarizes Jeff’s presentation of group’s work as a strong appeal to
symmetry “ . .. if you make those two guesses, 5 is in the center and 15 is the sum
then you don’t have too much trial and error to do before you get there. And that’s
a good sane way to go about doing the problem.” [Here the students may be
reassured, they all solved the problem, and their solutions weren’t gotten by pure
trial and error. The “two guesses” will reappear as instantiations of heuristics,
again suggesting that the students may be using “raw heuristics” which can be
refined. ]
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First (re)solution: By establishing subgoals and working backwards

First subgoal: What is the sum? So far heuristics haven’t been mentioned.
Schoenfeld shifts the focus to heuristics, says “What I want to do is ask a couple of
questions that illustrate some of Pélya’s strategies and use the answers to make
progress on this problem again so we’re going to revisit the problem a little bit.”
He erases the board and states “We’re back to the beginning, we want to place the
digits from 1 to 9 into this [the empty grid he has just drawn] so that the sum of
each row, column, and diagonal is the same.” Now he introduces a heuristic.
[Note the shift in the meaning of “you” in Schoenfeld’s first utterance. At the
beginning “you” is an unspecified person, perhaps one of the listeners. At the end
it is Richard.]

AHS: The first question is generic: What piece of information would
make the problem easier to solve? [He turns to face the class.]
That’s a really broad generic question. But you're facing a
problem, it’s posed in a particular way. Now you can ask
yourself is there some piece of information, some bit of
knowledge, so that if you just had that, the problem would be
significantly easier to solve? [To Richard] And you're nodding
your head yes, what would it be? [Schoenfeld moves closer to
Richard.]

Richard: Just to look around for the sum of the triples . . . and add the
three smallest numbers for the minimum, the three largest for
the [inaudible].

AHS: OK. So the key piece of information is, or certainly a key piece
of information is: this says that the sum of each row, column,
and diagonal should be the same, it would be awfully nice to
know what that number is, so what is the sum? [He writes
“What is the sum?” on the board.] And we had a suggestion
about how to think about this that I'll mention in a second. Let
me throw some more jargon at you. This is called, as simple as
it seems, in other contexts it’s a little bit more complicated, and

worth having a name, Establishing Subgoals.

Now Schoenfeld starts on the work of answering the question What is the sum?

by noting easy upper and lower bounds on the magic number—it must be less
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than the sum of the largest three numbers in the magic square, 9, 8, and 7; and

larger than the smallest three 3, 2, and 1.

He invites a response from the class by saying [33] “Is there anything else I can say
about that sum?” Gary?? responds. He seems to assume that Schoenfeld is
considering a magic square with 1, 2, and 3 in a row, column, or diagonal because
he says “You can narrow it even closer because if you used 1, 2, 3 in a single
column, row, or diagonal then you know that you're going to be building
something even larger, because 2 and 3 for instance are already gone so you have
to use 4, 5, and 6.” [Here Gary responds to Schoenfeld’s use of “I” by using “you”
both of which suggest that Schoenfeld is engaged in doing mathematics, rather
than presenting a finished product. Gary’s use of “you” also suggests a collegial
relationship with Schoenfeld.]

Rather than clarifying his earlier statements, Schoenfeld rephrases Gary’s
response: “OK, so in some sense the very least I can get for a sum if somewhere
I've used 1, 2, and 3 in a row, that might try this row, that row, or something like
that, the 3’s going to be involved in another sum, and that’s going to use at least 4

and 5.” He writes in the empty grid

415

saying, “And if that uses 4 and 5 . . . [his voice trails off and he pauses] What else
can I say? [pause] This says that there’s going to be one sum that’s at least 12. [pause]
Can you say anything else?”

During the next utterances the square on the blackboard undergoes the following
changes (an arrow indicates that the square to its left has been altered to yield the

square on its right):

12This student did not stay long in the course. He does not appear in our overview of students.
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Gary: If you actually wanted to build it this way then you’d go up on
the right with 6, and 7 next.

AHS: Well, that’s good, you go 3, 6, and 7. Is the argument now that
every sum has to be at least 16? That’s what it looks like we just
proved, right? No matter what magic square you draw, you're
going to get one sum that’s going to add up to 16? [pause]

Diane: No, because you could put the 3, 6, and 7 after the 1 [inaudible].

AHS: So the claim is, well I could put the 6 and 7 after the 1, that
gives me a 14, but then I've got to use an 8 and that says now
I've got a proof that I get at least a 16—a 17. [pause] What's
happening here? [pause] We already saw that there’s a magic
square with a 15, but it looks like we just proved that you've
got to get an 18. [pause] What’s happening?

Gary: Well, we know that we can’t have 1, 2, and 3 in the same line
anyway because we can’t construct a magic square from: it.

AHS: [confidently and quickly in contrast to his previous utterances]
OK. What we just showed is if you start witha 1,2, and 3 in a
row then you’re going to get some fairly large sums, that
doesn’t mean that every sum has to be that way. OK. [Erases

square.] So the sums are going to be larger than 6.

[Gary’s line of inquiry, trying 1, 2, and 3 in the same column to begin a solution to
the magic square, was not quickly curtailed as in the inscribed square discussion,
though it also does not lead to a solution. In fact Schoenfeld encourages Gary by
writing his suggestions on the board and asking “What else can I say?” (though in
a rather uncertain tone of voice). This path is curtailed in an obvious sense by
Schoenfeld, he erases the magic square and changes the subject. However, in
contrast to the dead-ends in the inscribed square discussion, a student is involved
as a collaborator in this action; Gary has noted that the assumption that 1, 2, and 3

are in the same column of a magic square can’t be true.]

He asks “Is there any other way we can get a handle [on this] besides good
guessing? And I don’t at all, want to put good guessing down, a symmetry guess is
an excellent way to go. Is there any other way we might get a handle on what this
might be?” Devon responds that the sum of the three rows of the magic square
must be equal to the sum of the numbers from 1 to 9. He then shows, using the

grid, how its use might give rise to Devon’s answer, and continues to show how
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the observation yields a proof that the magic number is 15. The subgoal has been

achieved.

[Devon’s suggestion has provided a “natural” way to introduce Working
Backwards and to give an example of illuminating the source of a mathematical
idea—showing that Devon’s suggestion is not a “rabbit pulled out of a hat.”
Schoenfeld’s use of this suggestion to introduce Working Backwards, a heuristic
which he would bring up during the magic square discussion in any case, is an

example of the opportunism described by Hayes-Roth and Hayes-Roth (1979).]

Second subgoal: What goes in the center? This is a natural moment to again
invoke Establishing Subgoals since finding the center of the magic square is a
useful next step. Schoenfeld pulls down the board with Establishing Subgoals and
erases all but Establishing Subgoals. [Here is an example of traditional blackboard
expertise and evidence of Schoenfeld’s plan for this discussion.] He says,

Since I have this statement, Establishing Subgoals, in a nice box on the
board, why don’t I take advantage of it again. We now know that the sum of
each row, column, and diagonal is supposed to be 15. What’s the next major
piece of information that would help me make significant progress on this
problem?

He again uses Pélya’s method of questioning. Student 113 responds “What goes in
the center.” Schoenfeld answers “Yeah. What goes in the center” and presents
another heuristic, Consider Extreme Cases. He then gives its mathematical

instantiation in this context.

AHS: So let’s ask an extreme case, can 9 go in the center of the
square? That’s as extreme as you can get. [He writes 9 in the
center of the square.]

Student 1: No.

AHS: Why not?

Student 1: You run out of numbers that you can add pairs of to 9.

13This student was invisible to the camera and can’t be identified with certainty. His voice appeared to be coming
from the right side of the room.
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AHS: If the magic number is 15, that raises a serious problem,
where’s 8 going to go? If I put an 8 there [he writes 8 in upper
left corner] I need a -2 over there and I ain’t got none. If I put
an 8 there [the upper middle square], I need a -2 over here and

so on. OK? So 9 can’t go in the center. [He erases 9.]

[Here the code-shift from “that raises a serious problem” to the attention-getting “I
ain’t got none” emphasizes the reason why 9 can’t go in the center of the square
and mirrors the student’s rather awkward sentence. Writing and erasing serve to

dramatize what Schoenfeld is saying and to display his reasoning.]

He continues more and more quickly through the cases of 8, 7, 6, gets to 5, says
“Maybe. How about the other extreme?,” writing 1 in the center of the square. He

continues and eliminates the remaining possibilities.

The subgoal of finding the center has been achieved. Schoenfeld doesn’t point this

out explicitly but makes the transition to the next activity by saying,

Having gotten that far we could consider some trial and error. But we ought
to at least take advantage of symmetry to see how much trial and error we
really have to do. So let me ask the question, how many different places are
there that we might stick a 1? There are really only two different places . . .

[corner and side pocket].

He then explicitly shows the symmetry he has mentioned several times, using
hand gestures accompanied by his verbal description of rotating the board. [The
gesture of rotating the board is an example of a deictic (McNeill, 1992). It is a visual
analogue of Schoenfeld’s involved language: he, not some undescribed
mechanism, is the rotater of the square. His gestures also allow him to give a

definition of symmetry without using technical language.]

There are really only two different places. If I had a solution with a 1 over
here [writes 1 in the upper left corner] then—and all the rest of these were
filled in, I could take that solution [puts his right hand, crooked left, over
the center of the grid and straightens his wrist], take the board, and rotate it
90 degrees [he puts his right hand above the grid, his left below, and rotates
them about the center of the grid so that the left hand ends above the grid],

that gives me a solution with 1 over here [points to upper right corner]. Or

65



equivalently, if I had a solution with 1 in the corner over here [points with
his left hand to upper right corner], rotating it that way [his left hand moves
up and to the right as he reverses his previous rotation gesture] gives me a
solution with the 1 over here [points to the 1 in upper left corner]. Same for
the other corners [points to the two lower corners]. So a solution with a 1 in
the corner is equivalent to, or generates a solution with a 1 in any other
corner. Similarly for 1 in a side pocket. That generates any of these [pointing

to each side pocket in turn].

Another heuristic is quickly noted (it’s just been illustrated); Schoenfeld writes
Exploit Symmetry, saying “That’s another strategy that comes in handy” and
returns to the work at hand. He writes 1 in the corner of the square, notes that 9
must go in the corner diagonally opposite, and discusses the placement of 2. Using
symmetry one need only check three places. Schoenfeld indicates each and shows
that no matter where 2 is placed some row, column, or diagonal will not add up to
15. He concludes “So what I've just showed is there’s no solution with a 1 in the
corner. That leaves us a 1 in the side.” He erases 1 and writes 1 in the side pocket,
discusses the placing of 2 and finishes the solution. [Looking at the case where 1 is
in the corner first makes the discussion smoother since this case doesn’t hold.
Such a choice is usual in both classroom and professional mathematical

presentations.]

Now he summarizes, “What we’ve proved along the way that the 1 has to go in
the side pocket, the 2 has to go in one of the two bottom positions opposite, and
the rest is forced, so the answer is that’s the only solution modulo symmetry,
which answers Devon’s question.” [A mathematician who solves a problem posed
by person X will, especially if X is famous, frequently say in an account of the
solution “This answers a question of X.” The episode of Devon’s posing of a
problem to its solution outlines in miniature the way a problem is posed and

solved amongst professional mathematicians.]
Second (re)solution: By working forward

Schoenfeld asks the ritual question “Are we done?” and Jeff replies “We’re never
done.” (The students are beginning to internalize the new classroom rituals.)
Schoenfeld replies “You're learning” and makes the transition to a new activity
“What I want to do is to go back to this problem in an entirely different way,”

summarizing the approach used before, erasing the board, then giving a
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description of the new approach which he’s termed (1991) Working Forward. Here
he doesn’t label it, just describes and gives an instantiation of this

approach—listing triples whose sum is 15.

Now he initiates the students” participation by asking for triples. Different students
call out responses hastened by Schoenfeld’s “Any more?” or “Another one?”
which follows quickly after he writes each triple on the board. He lists 159, 294, 258,
168, 357, and 195, says “Oops, we got that already” and crosses it out. They continue
456, 762, and stop. Schoenfeld says “Are we done, is that all of them?” A student!*

produces 834 and Schoenfeld asks “Are there any more?” No one replies.

Schoenfeld tells the class, “This is now something like the 142nd time I've used
this particular problem, 142nd time I've asked this particular question, “Are there
any more?,” and I get to ask the same next question for the 142nd time: How the
hell would you know? You've sort of generated them randomly, so you got a

whole bunch of them, but you might of caught them all and you might not.”

[Here again code-shifting serves several goals: “hell” emphasizes the seriousness
of the students” dilemma, and “generated” and “random” suggest mathematical
affiliation. As he says to the students, Schoenfeld has seen classes implement his
suggestion of listing triples of numbers unsystematically before. Here again, in
contrast to the inscribed square discussion he’s allowed, in fact encouraged, the
class to follow a path which will not easily lead to a solution. The nature of the
magic square makes this dead-end more quickly reached and more obvious than
those occurring in the inscribed square discussion. One reason for doing this is to
show the students that they’re in need of his teaching as well as the heuristic, Be
Systematic. Another is to illustrate the issue of control, the students don’t know
how to implement his suggestion in such a way that they know when they’ve

achieved it.]

He mentions the strategy whose omission led the class into its predicament,
writing “IT HELPS TO BE SYSTEMATIC!” on the side board. He summarizes the
difficulty, pointing to the crossed out triple 195 which serves as a record of the
students” activity and suggests a way to instantiate the strategy—Ilisting the triples

in increasing order and beginning the list with all the triples that start with 1.

141t was difficult to identify the students who participated in this segment, but possible to tell that different students
were calling out triples.
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To start this new path he erases the unsystematic list of triples from the board and
starts the new list with 1 5 9. The class calls out the rest of the triples. Schoenfeld
points out the connection between the triples and the magic square,

So we’ve got a total of eight triples, . . ., that’s nice, because there are eight
rows, columns and diagonals. Now what was the most important square? In
the magic square? The middle. How many sums was that square involved
in? [Here he uses the empty magic square to calculate, drawing horizontal,
vertical, and diagonal lines through the middle square to show that it is
involved in four sums.] How many digits appear four times? Only the 5,
that’s the only digit that appears four times. So if there’s a solution: Guess
what, this is a completely independent proof, 5 has to go in the center
square. [He writes 5 in the center.]

He uses this idea to show where the other numbers in the magic square must be
placed—numbers which appear in only two of the listed triples must go in “side
pockets” and numbers which appear in three of the listed triples must go in

corners.

The finding of two solutions has been enacted.

Now we’ve beat it to death. Are we done? [He pauses and looks at the class.]
Of course not, because so far we’ve only solved the problem I gave you. If
that’s how mathematics progressed, mathematics wouldn’t progress.
Solving known problems is not what mathematicians get paid for nor is it

anything they have fun doing.

Schoenfeld’s closing statement illustrates some themes of the course, that
problems may have multiple solutions and that solving a given problem is only
the beginning (problems can be generalized, extended, etc.). This is one of the
aspects of the course that reflects mathematical practice (Kitcher, 1984). After
Schoenfeld’s statement, students suggested extensions and generalizations of the
magic square. In session 3, the class discussed ways of generating 3 by 3 magic
squares with entries other than the numbers from 1 to 9. In session 4, after finding
there are no non-trivial 2 by 2 magic squares, the students conjectured that there is

no even-dimensional magic square, Mitch discussed a procedure for generating a 5
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by 5 magic square, Christina®® described a procedure for generating one of odd
dimension, and Devon showed that the magic number of a 3 by 3 magic square is
always divisible by 3 and that the number in the center is always one third of the
magic number. This was followed by a discussion of what a magic cube might be.
In session 9 Schoenfeld provided a counterexample to the conjecture that no non-
trivial magic squares of even dimension exist by showing the students an

engraving of Diirer’s Melancholia which depicts a 4 by 4 magic square.

Why teach a class this way?

Implicit in the preceding description is the question of why Schoenfeld chooses to
conduct his class in the manner he does. A proof that the magic square has a
solution that is unique modulo symmetry could have been given in far less time.
Why do it this way?

I'll begin with the issue of blackboard writing. The writing that appeared on the
blackboard was devoted to names of heuristics, diagrams, an equation, and a
question. One might consider Schoenfeld’s blackboard writing to be in conflict
with traditional mathematical practice, since it differs greatly from the kind of
writing seen in textbooks and articles and in other mathematics classrooms. It was,
as Schoenfeld says, “sparse and sloppy” (audio taped discussion, March 8, 1991)
while that of textbooks, articles, and traditional mathematics classes is profuse and

precise.

Certainly writing is an important part of mathematical discourse. However, its
relationship with the way mathematics is done is not obvious to those who aren’t
mathematicians. Mathematicians’ descriptions of mathematics show that writing
is but one way of communicating mathematically. Davis and Hersh’s (1986) Ideal
Mathematician communicates results to fellow experts “in a casual shorthand” but
in published writings “follows an unbreakable convention: to conceal any sign
that the author or the intended reader is a human being.” Stewart (1993) points out
that,

Much of mathematics is communicated by informal discussions over coffee,

seminars, lectures, and other media that do not produce permanent records.

7

When important mathematical ideas are “in the air,” other mathematicians

I5Christina was a computer science major who entered the class in the third session.
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get to hear of them by these informal routes, long before anything appears

in a technical journal. (p. 121)

Thurston’s description of mathematical communication gives a sense of the
differences between spoken informal mathematics and formal written

mathematics.

One-on-one, people use wide channels of communication that go far
beyond formal mathematical language. They use gestures, they draw
pictures and diagrams, they make sound effects and use body language.
Communication is more likely to be two-way, so that people can concentrate
on what needs the most attention. . . . In talks, people are more inhibited
and more formal. . . . In papers, people are still more formal. Writers
translate their ideas into symbols and logic, and readers try to translate back.
(1994, p. 166)

The description of the genesis of a proof by De Millo et al. (1986) suggests that
written mathematics is the end of a long process which begins with informal

communication.

In its first incarnation, a proof is a spoken message, or at most a sketch on a
chalkboard or a paper napkin. That spoken stage is the first filter for a proof.
If it generates no excitement or belief among his friends, the wise
mathematician reconsiders it. But if they find it tolerably interesting and
believable, he writes it up. After it has circulated in draft for a while, if it still
seems plausible, he does a polished version and submits it for publication. If
the referees also find it attractive and convincing, it gets published so it can

be read by a wider audience. (p. 272)

This aspect of mathematics is generally hidden from students (Rogers, 1992). One
doesn’t often see the genesis of a proof in a classroom, instead one sees the end-
product of the process described above, presented in detached language that erases
its author and origins. Such classroom experiences help to explain why students’
ideas about the nature of mathematics are sometimes so very different from those
of mathematicians. Some students may not even believe that mathematics is done
by human beings (Belenky et al., 1986) just as some city children used to believe
that milk grows in bottles. Work in cognitive science has shown that students’

beliefs about the nature of a subject may have profound effects on their learning of
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it (McLeod, 1992). De-emphasizing writing and formal mathematics, not only
reflects mathematical practice, but may also change students” beliefs about the

nature and the doing of mathematics.

De-emphasizing writing and formal mathematics may have other consequences
for students” learning. Thurston suggests that familiarity with the ideas of a
subfield of mathematics may need to precede the ability to recognize the same
ideas in written form.

People familiar with ways of doing things in a subfield recognize various
patterns of statements or formulas as idioms or circumlocutions for certain
concepts or mental images. But to people not already familiar with what’s
going on the same patterns are not very illuminating; they are often even

misleading. The language is not alive except to those who use it. (p. 167)

In general, students of mathematics, like those new to a subfield of mathematics,
are not already familiar with what’s going on. Mathematicians who want to learn
about a subfield usually ask what the ideas, questions, and objects of that subfield
are. Unlike mathematicians, students may not know to ask those questions and to
look for idioms and circumlocutions in written mathematics. When they
encounter written mathematics they may be focused on its form rather than its
meaning; reading each line of a proof, rather than trying to understand the ideas

behind it. More importantly, they may not have any sense that such ideas exist.

This suggests that an emphasis on formal written mathematics causes difficulty for
students, both from a cognitive and a metacognitive perspective. Students don’t
appear to perceive and interpret formal mathematics as mathematicians do.16
Their beliefs about the way mathematics is done and hence how they should learn
mathematics are derived from presentations of finished products. It seems
unlikely that their beliefs could be changed by seeing even more formal
mathematics, particularly since the students” means of interpreting that formal
mathematics would have to be addressed at the same time. Biographies of many
mathematicians suggest that informal mathematical experiences, often occurring
outside of the classroom, were an important factor in their mathematical
development (see for instance, Albers & Alexanderson, 1985; Albers,
Alexanderson, & Reid, 1990; Hersh & John-Steiner, 1993; Ulam, 1976; Weil, 1992).

161 cognitive science terms, students don’t appear to have schemata for formal mathematics similar to those of
mathematicians.
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Thurston’s statement, “The language is not alive except to those who use it” and
Schoenfeld’s (1994) statement, “When mathematics is taught as dry, disembodied,
knowledge to be received, it is learned (and forgotten or not used) in that way”
outline extreme cases which might illuminate the problem of how to teach
students mathematics. What I have tried to suggest in analyzing the language of
Schoenfeld’s classroom discussion, is that the discussion is an example of
embodying mathematics—presenting it as a particular kind of communication to
be used by all the people in that classroom, rather than as knowledge to be learned.
The complexity inherent in the word “communication” is suggested by listing
some of its components (Saville-Troike, 1989): linguistic knowledge; interaction
skills (this includes perception of salient features and norms of interpretation);
cultural knowledge (this includes values, attitudes, and schemata). In this view,
transmission of knowledge and skills is just one aspect of communication.
Similarly, communication among mathematicians is not restricted to formal
writing, it includes other methods: informal writing, as well as talking, gesturing.
Moreover, values, attitudes, and schemata are an important part of mathematical
communication. The work of Schoenfeld and others suggests that these other
aspects of mathematical communication play an important role in students’
learning of mathematics. Schoenfeld’s classroom suggests that such aspects of
mathematical communication may be taught inside as well as outside the
classroom and thus, unlike me and many other mathematicians, students need

not wait until they begin doing research to start communicating mathematically.
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Concluding discussion

In this section we synthesize our analyses of the early stages of Schoenfeld’s
problem solving course and offer some implications. We began this article with an
illustration of some long-term goals of Schoenfeld’s problem solving course: That
the class become a “mathematical community” advancing and defending
conjectures and proofs on mathematical grounds; and that the locus of authority
be the “mathematical community,” not the teacher. Because students’ experiences
in mathematics classrooms are, in general, very different from those of the
community he wishes to create, achieving these goals is not easy and the path
from the beginning of the course to a microcosm “of selected aspects of
mathematical practice and culture” (Schoenfeld, 1994, p. 66) is not obvious. Rather
than examining its later stages when its beginnings were likely to be invisible, we
focused on the course at its inception. Our initial question was: How does
Schoenfeld create a community of problem solvers where undergraduates learn to
think and do mathematics, when their past experience in mathematics has mainly

involved listening, writing notes, and learning procedures?
Short-term goals

After twelve or more years of schooling, undergraduates usually have well-
developed expectations about how mathematics classes will run and how
mathematics teachers will behave. Instructors of courses that differ from these
expectations often find that students question their competence, the value of the
course, or what they are expected to do in the class. Because Schoenfeld’s course is
an elective, if students decide he is not competent, that the course is not of value,
or they don’t understand what they will be asked to do, they may well leave the
course. The students who stay in the course will need to understand what they are
expected to do. Schoenfeld’s path to achieving a “classroom mathematical

community” includes the short-term goals of:

e establishing his “credentials”;

¢ showing the students that heuristics are an important part of
mathematics;

e ¢giving the students a sense of what the course is about;

communicatin is expectations for classroom behavior.
° t h tat f 1 beh 17

170r as Schoenfeld put it (audiotaped discussion, May 22, 1991) “letting them know what they’re in for.”
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The first two goals are related to an ancient pedagogical problem (cf. Plato’s
Protagoras): How can a student ignorant of a subject judge whether or not
someone is capable of teaching it? The last two goals address a similar problem:
How can students be asked to do mathematics (in some ways) like mathematicians

if they have no idea how mathematicians do mathematics?

Schoenfeld’s solution includes illustration and enactment. Here we use
“enactment” in a somewhat theatrical sense. His introduction to the course and
his treatment of the telescoping series portrayed him, though by different means,
as both a member and critic of the mathematical community. The introduction
was a monologue not involving the students. In contrast the caricature of the
“typical calculus professor” enacted the distinction between how mathematics is
presented in classrooms and how it is done by mathematicians using heuristics.
Rather than telling the students about the drawbacks of traditional mathematics
teaching, Schoenfeld depicted them in his caricature, then modeled the solution of
a mathematician. During the discussion of the next two problems the students
responded with traditional behaviors and then, with Schoenfeld’s prompting,
enacted some of the mathematical behaviors that he was trying to establish.

The discussion of the inscribed square illustrated the power of heuristics and the
skill required to use them successfully. Students will, on average, not succeed in
showing that a square can be inscribed in an arbitrary triangle, whether or not the
heuristic Try an Easier Related Problem is suggested, so they will consider it a
difficult problem. Because that difficult problem will yield, when an appropriate
heuristic is suggested and its use scaffolded (Collins, Brown, & Newman, 1989), the
inscribed square problem serves to show the power of heuristics in obtaining a
solution—as well as the skill required to use them successfully. Allowing students
to struggle may be an essential part of this process, both in showing the power of
heuristics and Schoenfeld’s ability to teach them. Students often aren’t conscious
of the important role that non-traditional teachers’ suggestions and questions play
in their progress toward a solution and sometimes conclude that such teachers
don’t know very much mathematics—otherwise they would tell them the answer.
The first student presentation gave Schoenfeld an opportunity to mention a
traditional student behavior, looking to the teacher for approval, and to have one
of his expectations for classroom behavior enacted, that students not look to him
for approval. This was a step toward the long-term goal of shifting the locus of
authority away from the teacher and having the class, aided by Schoenfeld’s “nasty
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questions,” develop its own standards of correctness. The presentation also
allowed the enactment of another expectation, that of “not just beautiful finished

solutions but also explanations of how and why.”

The discussion of the magic square served different goals: illustrating uses of
heuristics and the theme of multiple solutions, and as a vehicle to engage students
in discussion. It showed that different heuristics can be used singly or in
combination to solve the same problem. (In contrast, the inscribed square showed
that the same heuristic can be used in different ways on the same problem, a
different illustration of the theme of multiple solutions.) Because it is easy to
solve, the magic square could not be used to illustrate the power of heuristics in
obtaining a solution. Instead it allowed students to focus on the use of heuristics.
Students find generalizations of the magic square easy,’® hence Schoenfeld could
and did use it to have students enact another long-term goal of the course: That

students take problems and make them their own by extension or generalization.
Pedagogy
Planning, direction, and authority

The sequence of problems and associated activities (Schoenfeld’s introduction to
the course, lectures, reflective presentations, student presentations, small-group
work, and whole-class discussions) give an overall structure for the first days of
the course. The problems are not chosen to cover content in the traditional sense,
but to make certain points about heuristics and the course. Schoenfeld has used
the telescoping series, inscribed square, and magic square for years. He was thus
familiar with probable student responses to each in the contexts that he provides.
For example, he knew what students are likely to do with the inscribed square
without heuristics, and with the heuristics Try an Easier Related Problem and
Relax a Condition. In this sense he controlled the class in the same way someone
who digs a ditch controls the water flowing through it: The overall structure for

7

the course channeled students” “natural” responses in directions that served many
of Schoenfeld’s goals. At some points (for example in the discussion of “easier
related problems” for the inscribed square) without additional direction students
might have become entangled in a fruitless exploration—an authentic

mathematical experience, but one which was not likely to encourage students to

18“Easy” like “difficult” has an ofyl)erational definition in this context—if, on average, students readily suggest
generalizations of this problem, then generalizations of the problem can be said to be easy.
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stay in the course or have confidence in its teacher. At such points Schoenfeld
used his authority as a teacher and mathematician to guide the flow of the
discussion. However, a goal of the course is that the teacher not remain the sole
authority. Schoenfeld’s delegation of authority to the students during Devon’s
presentation of his solution for the inscribed square problem was a step toward

satisfying this long-term goal.
Opportunism

Within the structure imposed by the sequence of problems, the heuristics
illustrated by the problems, and the activities surrounding them there is room for
opportunism (Hayes-Roth & Hayes-Roth, 1979; Schoenfeld et al., 1992).
Schoenfeld’s knowledge of the problems (and of mathematics) allowed him to take
advantage of student remarks such as Devon’s suggestion about a solution for the
magic square. Here the analogy might be to a navigator who knows how to get to a
particular location in any event, but is able to take advantage of an unexpected
wind not only to arrive, but arrive sooner. In this case, Devon’s suggestion
provided a context not only for discussing Working Backwards which Schoenfeld
would do in any case (Schoenfeld, 1991), but showing it as a possible source for
Devon’s suggestion. This satisfied the goal of discussing Working Backwards and
additional goals: incorporating student suggestions and again illustrating the
notion of “not just beautiful finished solutions but also explanations of how and

4

why.
Discourse and communication

Schoenfeld also used Pélya’s method of questioning to involve the students in
using heuristics. This method of questioning has social and cognitive aspects. On
the one hand, Schoenfeld was asking for a response from the students which got
them talking, helping to begin the community he wished to establish. On the
other, the method of questioning scaffolded the students” applications of heuristics
to particular cases. Other features of classroom communication (involved
language, involved gestures, informal blackboard writings) suggested that the class

was doing mathematics rather than being presented with mathematics.

In summary, we suggest that important elements in achieving the short-term

goals for the first days of the course were:
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* the sequence of problems Schoenfeld used;

* his knowledge of probable student responses to the problems;

* his knowledge of possible solutions to the problems and the heuristics
that generate them;9

* his use and delegation of authority;

* his patterns of written and oral communication, and classroom discourse.
Implications

We will not venture to draw universal implications from a study of two days in
one classroom. Nor is our intent to prescribe a teaching method. Instead, we hope

this example will help to illuminate the difficult task of teaching mathematics.

Teaching is sometimes dichotomized as either transmission or discovery.? In the
language of calculus reform (e.g., UME Trends, 1995) a teacher is either a “sage on
the stage” or “guide on the side.” Because it contains elements of both,
Schoenfeld’s teaching provides a counterexample to this notion. The form
(though not always the content) of his presentations to the class contains
traditional elements such as lecturing and blackboard expertise, but he combines
these with non-traditional elements such as questioning and student work in
groups. Furthermore, our analyses show that characterizing teaching in terms of
use and frequency of methods such as lecture, small-group work, and whole-class
discussion is inadequate because such characterizations omit the complex

interaction between curriculum and pedagogy.

The problem solving course also counters the notion that a curriculum must be
composed of individual strategies which are learned and practiced separately.
Traditional algebra and calculus courses do just that—and instructors find to their
dismay that students know the strategies, but may not know when to apply them.
However, instructors who simply change course curricula without addressing
student beliefs and expectations often find their students bewildered or resistant
(see e.g., Cipra, 1995; Culotta, 1992). In turn, instructors often react by returning to

traditional practices, and thus the status quo is maintained.

The curriculum and pedagogy of Schoenfeld’s problem solving course suggests a

way to alter unmathematical student habits—that they be enacted, mentioned, and

19What we have labeled here “knowledge of probable student responses to the problems” and “knowledge of
Eossible solutions and the heuristics that generate them” is related to Shulman’s notions of pedagogical content
nowledge and subject matter knowledge (Fennema & Franke, 1992; Shulman, 1987).

20We thank Barbara Pence for reminding us of this.
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revised. For example, the unsystematic listing of the triples in the magic square or
the student looking to the teacher for approval were situations in which typical
student behavior occurred (and was expected to occur), was commented upon, and
an alternative enacted. Such situations can be engineered in other courses as they
are in the problem solving course. Here is a brief sketch of an example: Students
can be asked to work a problem that can be solved by a strategy that has just been
taught, then asked to work a problem that is superficially similar but which can’t
be solved using the same strategy. Students” usual response is to try the most
recently taught strategy. The instructor is then provided with an opportunity to
mention that an important part of knowing a strategy is the recognition of the
situations in which it can and can not be used—and to comment on the
expectation that problems given in class are to be solved using the material that
has been most recently taught. As with all curricular and pedagogical changes, this

one would probably require several cycles of trial and refinement.
Final commentary

Polya wrote in 1963:

Everybody demands that the high school should impart to the students not
only information in mathematics but know-how, independence, originality,
creativity. Yet almost nobody asks these beautiful things for the
mathematics teacher—is it not remarkable? . . . Here, in my opinion, is the
worst gap in the subject matter knowledge of the high school teacher: he [or

she] has no experience of active mathematical work. . .. (Pdlya, 1981, p. 113)

Current reforms in precollege education make the experience of active
mathematical work even more necessary for teachers now than in 1963. Moreover,
studies suggest that prospective mathematicians, as well as prospective teachers,
benefit from such an experience (Tucker, 1995). But it is still the case that few
undergraduate courses offer students the opportunity to do, rather than ingest,
mathematics (Tucker, 1995). Instructors have little opportunity to observe such
courses and those who do may have little time in which to make sense of their
curriculum and pedagogy. We hope in this article to have provided a useful

substitute for a visit to one such course.
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Appendix A: Schoenfeld’s introduction to the course

OK ... Let me give you a little sense of what the course is about—a little bit of
history. My name is Alan Schoenfeld. This is Math 67. It’s a course in problem
solving. It’s a hands-on course. You'll spend most of the time in class solving
problems, talking about them, doing mathematics. This is one of the rare courses
in the department—in the country—where you actually do mathematics from the
very beginning. The idea is to give you a chance to do some explorations, learn

some neat stuff about problem solving.
Here’s some of the history . . .

Way back in what seems like the dark ages—early 1970’s—I was a young
mathematician, had finished my degree, was a topologist and measure theorist
happily proving theorems as beginning assistant professor, when I tripped across a
book called How to Solve It written by George Polya in 1947. Pélya is—was one of
the eminent mathematicians of this century—probably one of the ten, fifteen
greatest mathematicians of the 20th century. When he was about sixty, he
decided—that was in the late 1940’s—he decided: “You know, I've led a long and
productive life. It's time for me to sit down and maybe think about start writing
some things that would help other people to do and learn about mathematics.” So
he wrote this little thing called How to Solve It, in which he did a lot of
introspection, said basically: “You know, there are some things that seem to be
productive ways to solve problems, for me, for other mathematicians—ways of
thinking that we’ve picked up, tricks of the trade that enable us to be really
successful at solving problems. And they help us a lot. Maybe if I wrote them
down—shared them—it would make life a little bit easier for other people as
well.” He went on, stayed in that business for another thirty or so years,

productively until his mid-nineties.

I read the book in 1974 when I was a very young mathematician, and had a very
funny reaction to it. I started out, read a few pages . . . and he said,

“Mathematicians do this.” I read a few more . . . he said, “Mathematicians do this.”
And I started to smile. “Hot damn, I must be a real mathematician—I do all the

’//

things Polya says they do!” Then got pissed off, and said, “Hey, wait a sec. You
know, here I am. I finished an undergraduate career. I went through an entire
career as a graduate student. I'm a young professional. Now for the first time I'm

reading about these tricks of the trade. Why didn’t they tell me when I was a
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freshman, and save me the trouble of discovering all of them for myself? Maybe
it’s a version of the medieval trial by gauntlet: the only people we want are the

ones who succeed without knowing the rules.” I don’t know . . .

So I asked around, and I asked some of the people who prepared people for
problem solving competitions. There is a thing called the Putnam exam that a lot
of people study for—if you do well on it you're guaranteed admission to the
graduate school of your choice. I asked people who were in mathematics

education. And the uniform response I got was:

Every mathematician I talked to said, “Yup, Pélya is absolutely right. My guts tell
me he is right. I do the things he writes about.” And every problem solving coach,
and everyone I talked to who was involved in getting students to solve problems
better, said, “You know, it’s a strange thing. I've never been able to use Pdlya’s
ideas in such a way that my students actually wound up being better at it. So I don't

use them very much anymore.”

That was the intellectual dilemma that in the mid-1970’s got me to turn to
problem solving and got me to focus on it, as the main thing that I would do for
the next 15 years. ‘Cause on the one hand, I believe in the ideas that Pélya had.
And on the other hand I believe the people who said, “As constituted, Pélya’s
ideas don’t work.” So what I've been involved in largely for the past 15 years is
figuring out how to make those ideas work—figuring out what it is that it takes to
use the kind of problem solving strategies that he talks about, effectively; and
through the years building and changing and modifying this course so that it
works. And the one thing that I can guarantee you is: It does work. By the end of
this course you will have an arsenal of problem solving tools and techniques that
will enable you to be much more successful, not only in solving problems that
you’'ve been shown how to solve, but also at encountering new things and making
sense of them—which is something that your math courses don’t normally train

you how to do.

I'll tell you about the ideal goals for a course like this and then, what I actually did
as evidence of what you can expect to be in for; and then I'll tell what the structure
of the course will be; and then I'll stop talking and we’ll do what we should do,

which is get on to solving problems.
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The goal of this course is to give you enough experience and exposure to solving
problems and learning about the tools and techniques of the trade so that you walk
out of this course a far more resourceful and better problem solver, . . . again, at
not only at dealing with the kinds of things I've shown you to deal with in the
course, but also when you encounter something new—having at your disposal a
set of techniques that will enable you to make progress on and make sense of a
problem that you haven’t been shown how to solve.

Here’s the ideal test for the course. I've been in problem solving for fifteen, twenty
years. There are other people who have massive reputations for such things.
There’s a guy named Paul Halmos who used to be editor of the American
Mathematical Monthly, who's been writing about problem solving forever. The
kind of thing you might want to do is say to Halmos, “Hey, look. Schoenfeld’s
gonna teach his problem solving course. Here are the backgrounds of his students.
Here are the kind of people you can expect to see in the course. What we’d like you
to do is make up two tests. Make up a matched pretest and posttest, which in some
sense are identical in content. And, he won’t know what’s in your tests; you won’t
know what’s in his course. If he really does what he says he does, then his students
should do far better on the posttest than they did on the pretest. And other kids
taking, say math H50A, or analysis, or Riemann surfaces, shouldn’t really show
any performance difference.” That would be the sort of iron-clad test that I did

something in this course.

I never had the nerve to do that [giggles from the class, Schoenfeld smiles]. But I'll
tell you what I did—which was worse—some two or three versions of the course
ago. I gave an in-class final exam. (Now I actually prefer, although rules require in-
class exams . . . what you’ll be doing is a couple of take-homes, for the mid-term

and final, just a pro forma simple in-class written exam.)

I gave an in-class final, and there were three parts to the final exam. The first part
was problems like the problems we solved in class. No surprise, you expect people
to do well on those. The second part was problems that could be solved by the
methods that we used in class—but ones for which if you looked at them you
couldn’t recognize that they had obvious features similar to the ones that we’d
studied in class. So yes, you had the tools and techniques, but you had to be pretty
clever about recognizing that they were appropriate. And, the class did pretty well
on those too. Part three of the final exam . . . There’s a collection of books called the

Hungarian Problem Books which have some of the nastiest mathematical
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problems known to man and woman. I went through those, and as soon as I
found a problem I couldn’t make any sense of, whatsoever, I put it on the final. (I
know that makes you feel good.) [Laughter from class, Schoenfeld smiles.] The
class did spectacularly well, and actually wound up solving some problems I
didn’t, OK—which is pretty good proof that amazing things happen in the class.
And they happen, I think, because we’re serious about really doing
mathematics—which is the name of the game. So let me tell you a bit about what'’s

gonna happen.

Most days I'm going to walk in (today being only a slight exception in the
sequence), and hand out a bunch of problems. I've got enough here to probably
keep us busy for two days or so. And what you're seeing here is unusual, because
you won't be seated in rows watching me talk. Instead you're going to break into
groups of three or four or five, and work on problems together. As you're working
on them, I'll circulate through the room, occasionally make comments about the
kinds of things you're doing, respond to questions from you. But, by and large, I'll

just nudge you to keep working on the problems.

Then at some point I'll call us to order as a group, and we’ll start discussing the
things that you've done, and talk about the things that you've pushed and why;
what’s been successful, what hasn’t. I'll mention a variety of specific mathematical
techniques as we go through the problems. Many of the problems are chosen so
that they illustrate useful techniques. So you’ll work on one for a while; may or
may not make some progress; and then we’ll talk about it. And as we talk about it
what I'll do is indicate some of the problem solving strategies that I know, and that
are in the literature, that might help you make progress on this problem, and
progress on other problems. And we’ll use those strategies as a means of

bootstrapping our way into the problems.

The course is pretty wide-open. I've taught it now seven or eight times, every
other year, thereabouts. And every year the course is different, because it turns out
to be a creature of the people in it. Everything mathematical is fair game in here,
which means that you'll find if we get turned on by a problem, we’ll push it. If we
see interesting things, we’ll pursue that particular domain of mathematics for a
while. The bottom line is: I'm happy when we’re doing real mathematics. What
that means may not be clear to you now but it will become increasingly clear

during the semester . . . and this for me is the course I most love teaching ‘cause
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it’s the greatest fun and the one that is most involving for both me and my

students.

As I said, what’s going to happen is: Most days I'll hand out problems. We’ll work
on them in class. Some of the problems can be solved fairly fast and some of them
merely serve as introductions to more conjectures and more problems. Other
problems may be things that we visit for two or three days—of classes—maybe
even a week or two as we do something, find something interesting in it, but don't
make enough progress as a group; so I'll say, “Fine, let’s get back to it next time”
and we’ll keep working on the problem over a period of days. So what we do the
vast majority of times in here is just do and talk mathematics. And learn some

mathematics.

The grading for the course. Well, a week or two into the class I'll give you the
opportunity to write out a problem or two for me so that I can get a sense of the
kind of writing you do, and give you some feedback on the kind of writing I expect.
The first main thing we do is: about half-way through the course I'll give you a
two-week take-home. It'll consist of about ten problems and they will occupy you
for a long time. But you'll make progress on them and you’ll do reasonably well
on them. And then, the final. Again, the department formally requires me to give
an in-class final, so I usually wind up giving a one-problem in-class final to meet
the rules and regulations. That’s about ten percent of the final exam grade. The rest
of it is another take-home that you'll have two weeks to work on. There are some

funny rules, which are that:

What counts is not simply the answer, what counts is doing mathematics. And
that means, among other things, if you can find two different ways to solve a
problem, you'll get twice as much credit for it. If you can extend the problem and
generalize it and make it your own, you’ll get even more. The bottom line is, I'd
like to have you doing some mathematics and I will do everything I
can—including using grading—as a device for having you do that. Grades turn out
to be pretty much of a non-issue in the course. What usually happens is, people get
sucked into it. You get out of the course what you put into it, basically—that
becomes clear. If you haven’t done much through the semester, you’ll find you're
not ready to do terribly well on the midterm and final; if you have, you'll find that
you'll do fairly well. Anyone who kicks in and just participates actively during the
semester (it’s obvious) and no one who’s done that has ever gotten less than C+.

Typically, the grades have been mostly As and Bs because people have done very
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well on what’s demonstrably good mathematics. So we can say more about grading
when the time comes, but it really will turn out to be a non-issue. Today what I'm
going to do, is just now, stop talking—that will make us all feel better—and then
hand out a bunch of problems. They’re especially chosen for the first day, to make
a couple of points—rhetorical points about problem solving strategies. I will make
those points clearer after you've worked on the problems for a while. But I think
designed to give you a sense of what the rest of the semester is going to be like. OK.
Anybody got any questions? [Pauses, no questions.]

OK. Then what you ought to do is break into groups of three or four or
thereabouts; and you should be prepared to work together . . .

[Refers to the fact that someone is videotaping the class.] Oh, the man with the
camera. As I said, this is—this has been part of my own enterprise now for about
15 years. And over the years the course has developed and grown in interesting
ways. And one of the things that I like to do is make sense of what happens in the
course myself. I often write about it as part of my research, as well as part of my
teaching. (They go hand in hand because my research is about understanding the
nature of mathematical thinking and using that understanding to help build
courses like this.) So that camera is a record for me of what’s happened in the
course, so that I can reflect on it, in the hope of making sense of it and making it
better for the next round of students.
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